ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 GIF version

Theorem rab0 3437
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 noel 3413 . . . . 5 ¬ 𝑥 ∈ ∅
21intnanr 920 . . . 4 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
3 equid 1689 . . . . 5 𝑥 = 𝑥
43notnoti 635 . . . 4 ¬ ¬ 𝑥 = 𝑥
52, 42false 691 . . 3 ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥)
65abbii 2282 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2453 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
8 dfnul2 3411 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
96, 7, 83eqtr4i 2196 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  wcel 2136  {cab 2151  {crab 2448  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by:  ssfirab  6899  sup00  6968
  Copyright terms: Public domain W3C validator