ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 GIF version

Theorem rab0 3443
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 noel 3418 . . . . 5 ¬ 𝑥 ∈ ∅
21intnanr 925 . . . 4 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
3 equid 1694 . . . . 5 𝑥 = 𝑥
43notnoti 640 . . . 4 ¬ ¬ 𝑥 = 𝑥
52, 42false 696 . . 3 ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥)
65abbii 2286 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2457 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
8 dfnul2 3416 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
96, 7, 83eqtr4i 2201 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1348  wcel 2141  {cab 2156  {crab 2452  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  ssfirab  6911  sup00  6980
  Copyright terms: Public domain W3C validator