ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 GIF version

Theorem rab0 3479
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 noel 3454 . . . . 5 ¬ 𝑥 ∈ ∅
21intnanr 931 . . . 4 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
3 equid 1715 . . . . 5 𝑥 = 𝑥
43notnoti 646 . . . 4 ¬ ¬ 𝑥 = 𝑥
52, 42false 702 . . 3 ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥)
65abbii 2312 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2484 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
8 dfnul2 3452 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
96, 7, 83eqtr4i 2227 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2167  {cab 2182  {crab 2479  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by:  ssfirab  6997  sup00  7069
  Copyright terms: Public domain W3C validator