| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rab0 | GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . . . 5 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | intnanr 935 | . . . 4 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
| 3 | equid 1747 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 4 | 3 | notnoti 648 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
| 5 | 2, 4 | 2false 706 | . . 3 ⊢ ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥) |
| 6 | 5 | abbii 2345 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
| 7 | df-rab 2517 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 8 | dfnul2 3493 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 9 | 6, 7, 8 | 3eqtr4i 2260 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 {crab 2512 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: ssfirab 7094 sup00 7166 |
| Copyright terms: Public domain | W3C validator |