| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rab0 | GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3463 | . . . . 5 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | intnanr 931 | . . . 4 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
| 3 | equid 1723 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 4 | 3 | notnoti 646 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
| 5 | 2, 4 | 2false 702 | . . 3 ⊢ ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥) |
| 6 | 5 | abbii 2320 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
| 7 | df-rab 2492 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 8 | dfnul2 3461 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 9 | 6, 7, 8 | 3eqtr4i 2235 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 {crab 2487 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-dif 3167 df-nul 3460 |
| This theorem is referenced by: ssfirab 7032 sup00 7104 |
| Copyright terms: Public domain | W3C validator |