ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 GIF version

Theorem rab0 3475
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 noel 3450 . . . . 5 ¬ 𝑥 ∈ ∅
21intnanr 931 . . . 4 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
3 equid 1712 . . . . 5 𝑥 = 𝑥
43notnoti 646 . . . 4 ¬ ¬ 𝑥 = 𝑥
52, 42false 702 . . 3 ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥)
65abbii 2309 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2481 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
8 dfnul2 3448 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
96, 7, 83eqtr4i 2224 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2164  {cab 2179  {crab 2476  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-nul 3447
This theorem is referenced by:  ssfirab  6990  sup00  7062
  Copyright terms: Public domain W3C validator