| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rab0 | GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noel 3454 | . . . . 5 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | intnanr 931 | . . . 4 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) | 
| 3 | equid 1715 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 4 | 3 | notnoti 646 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 | 
| 5 | 2, 4 | 2false 702 | . . 3 ⊢ ((𝑥 ∈ ∅ ∧ 𝜑) ↔ ¬ 𝑥 = 𝑥) | 
| 6 | 5 | abbii 2312 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = {𝑥 ∣ ¬ 𝑥 = 𝑥} | 
| 7 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 8 | dfnul2 3452 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 9 | 6, 7, 8 | 3eqtr4i 2227 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 {crab 2479 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-nul 3451 | 
| This theorem is referenced by: ssfirab 6997 sup00 7069 | 
| Copyright terms: Public domain | W3C validator |