ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri13 GIF version

Theorem onntri13 7251
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri13 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))

Proof of Theorem onntri13
StepHypRef Expression
1 nnral 2477 . 2 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2 nnral 2477 . . 3 (¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
32ralimi 2550 . 2 (∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
41, 3syl 14 1 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3o 978  wral 2465  Oncon0 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-ral 2470  df-rex 2471
This theorem is referenced by:  onntri3or  7258
  Copyright terms: Public domain W3C validator