ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri35 GIF version

Theorem onntri35 7193
Description: Double negated ordinal trichotomy.

There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑥 = 𝑦𝑦𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑦𝑥), (3) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥), (4) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑦𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7194), (3) implies (5) (onntri35 7193), (5) implies (1) (onntri51 7196), (2) implies (4) (onntri24 7198), (4) implies (5) (onntri45 7197), and (5) implies (2) (onntri52 7200).

Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥𝑦𝑥 = 𝑦𝑦𝑥 or the 𝑥𝑦𝑦𝑥 form, as shown in exmidontri 7195 and exmidontri2or 7199, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7201 and (4) by onntri2or 7202.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

Assertion
Ref Expression
onntri35 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri35
StepHypRef Expression
1 pw1on 7182 . . . . 5 𝒫 1o ∈ On
21onsuci 4493 . . . 4 suc 𝒫 1o ∈ On
3 3on 6395 . . . 4 3o ∈ On
4 eleq1 2229 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥𝑦 ↔ suc 𝒫 1o𝑦))
5 eqeq1 2172 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥 = 𝑦 ↔ suc 𝒫 1o = 𝑦))
6 eleq2 2230 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑦𝑥𝑦 ∈ suc 𝒫 1o))
74, 5, 63orbi123d 1301 . . . . . . 7 (𝑥 = suc 𝒫 1o → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
87notbid 657 . . . . . 6 (𝑥 = suc 𝒫 1o → (¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
98notbid 657 . . . . 5 (𝑥 = suc 𝒫 1o → (¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ¬ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
10 eleq2 2230 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o𝑦 ↔ suc 𝒫 1o ∈ 3o))
11 eqeq2 2175 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o = 𝑦 ↔ suc 𝒫 1o = 3o))
12 eleq1 2229 . . . . . . . 8 (𝑦 = 3o → (𝑦 ∈ suc 𝒫 1o ↔ 3o ∈ suc 𝒫 1o))
1310, 11, 123orbi123d 1301 . . . . . . 7 (𝑦 = 3o → ((suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
1413notbid 657 . . . . . 6 (𝑦 = 3o → (¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
1514notbid 657 . . . . 5 (𝑦 = 3o → (¬ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
169, 15rspc2v 2843 . . . 4 ((suc 𝒫 1o ∈ On ∧ 3o ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
172, 3, 16mp2an 423 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o))
18 3ioran 983 . . 3 (¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o) ↔ (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
1917, 18sylnib 666 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
20 sucpw1nel3 7189 . . . 4 ¬ suc 𝒫 1o ∈ 3o
2120a1i 9 . . 3 EXMID → ¬ suc 𝒫 1o ∈ 3o)
22 2on 6393 . . . . . . 7 2o ∈ On
23 suc11 4535 . . . . . . 7 ((𝒫 1o ∈ On ∧ 2o ∈ On) → (suc 𝒫 1o = suc 2o ↔ 𝒫 1o = 2o))
241, 22, 23mp2an 423 . . . . . 6 (suc 𝒫 1o = suc 2o ↔ 𝒫 1o = 2o)
25 df-3o 6386 . . . . . . 7 3o = suc 2o
2625eqeq2i 2176 . . . . . 6 (suc 𝒫 1o = 3o ↔ suc 𝒫 1o = suc 2o)
27 exmidpweq 6875 . . . . . 6 (EXMID ↔ 𝒫 1o = 2o)
2824, 26, 273bitr4ri 212 . . . . 5 (EXMID ↔ suc 𝒫 1o = 3o)
2928notbii 658 . . . 4 EXMID ↔ ¬ suc 𝒫 1o = 3o)
3029biimpi 119 . . 3 EXMID → ¬ suc 𝒫 1o = 3o)
31 3nelsucpw1 7190 . . . 4 ¬ 3o ∈ suc 𝒫 1o
3231a1i 9 . . 3 EXMID → ¬ 3o ∈ suc 𝒫 1o)
3321, 30, 323jca 1167 . 2 EXMID → (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
3419, 33nsyl 618 1 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  w3o 967  w3a 968   = wceq 1343  wcel 2136  wral 2444  𝒫 cpw 3559  EXMIDwem 4173  Oncon0 4341  suc csuc 4343  1oc1o 6377  2oc2o 6378  3oc3o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by:  onntri3or  7201
  Copyright terms: Public domain W3C validator