Proof of Theorem onntri35
Step | Hyp | Ref
| Expression |
1 | | pw1on 7140 |
. . . . 5
⊢ 𝒫
1o ∈ On |
2 | 1 | onsuci 4469 |
. . . 4
⊢ suc
𝒫 1o ∈ On |
3 | | 3on 6364 |
. . . 4
⊢
3o ∈ On |
4 | | eleq1 2217 |
. . . . . . . 8
⊢ (𝑥 = suc 𝒫 1o
→ (𝑥 ∈ 𝑦 ↔ suc 𝒫
1o ∈ 𝑦)) |
5 | | eqeq1 2161 |
. . . . . . . 8
⊢ (𝑥 = suc 𝒫 1o
→ (𝑥 = 𝑦 ↔ suc 𝒫
1o = 𝑦)) |
6 | | eleq2 2218 |
. . . . . . . 8
⊢ (𝑥 = suc 𝒫 1o
→ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝒫
1o)) |
7 | 4, 5, 6 | 3orbi123d 1290 |
. . . . . . 7
⊢ (𝑥 = suc 𝒫 1o
→ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (suc 𝒫 1o ∈
𝑦 ∨ suc 𝒫
1o = 𝑦 ∨
𝑦 ∈ suc 𝒫
1o))) |
8 | 7 | notbid 657 |
. . . . . 6
⊢ (𝑥 = suc 𝒫 1o
→ (¬ (𝑥 ∈
𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ¬ (suc 𝒫 1o
∈ 𝑦 ∨ suc 𝒫
1o = 𝑦 ∨
𝑦 ∈ suc 𝒫
1o))) |
9 | 8 | notbid 657 |
. . . . 5
⊢ (𝑥 = suc 𝒫 1o
→ (¬ ¬ (𝑥
∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ¬ ¬ (suc 𝒫
1o ∈ 𝑦 ∨
suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫
1o))) |
10 | | eleq2 2218 |
. . . . . . . 8
⊢ (𝑦 = 3o → (suc
𝒫 1o ∈ 𝑦 ↔ suc 𝒫 1o ∈
3o)) |
11 | | eqeq2 2164 |
. . . . . . . 8
⊢ (𝑦 = 3o → (suc
𝒫 1o = 𝑦
↔ suc 𝒫 1o = 3o)) |
12 | | eleq1 2217 |
. . . . . . . 8
⊢ (𝑦 = 3o → (𝑦 ∈ suc 𝒫
1o ↔ 3o ∈ suc 𝒫
1o)) |
13 | 10, 11, 12 | 3orbi123d 1290 |
. . . . . . 7
⊢ (𝑦 = 3o → ((suc
𝒫 1o ∈ 𝑦 ∨ suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫 1o) ↔
(suc 𝒫 1o ∈ 3o ∨ suc 𝒫
1o = 3o ∨ 3o ∈ suc 𝒫
1o))) |
14 | 13 | notbid 657 |
. . . . . 6
⊢ (𝑦 = 3o → (¬
(suc 𝒫 1o ∈ 𝑦 ∨ suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫 1o) ↔
¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫
1o = 3o ∨ 3o ∈ suc 𝒫
1o))) |
15 | 14 | notbid 657 |
. . . . 5
⊢ (𝑦 = 3o → (¬
¬ (suc 𝒫 1o ∈ 𝑦 ∨ suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫 1o) ↔
¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc
𝒫 1o = 3o ∨ 3o ∈ suc 𝒫
1o))) |
16 | 9, 15 | rspc2v 2826 |
. . . 4
⊢ ((suc
𝒫 1o ∈ On ∧ 3o ∈ On) →
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ (suc 𝒫
1o ∈ 3o ∨ suc 𝒫 1o =
3o ∨ 3o ∈ suc 𝒫
1o))) |
17 | 2, 3, 16 | mp2an 423 |
. . 3
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ (suc 𝒫
1o ∈ 3o ∨ suc 𝒫 1o =
3o ∨ 3o ∈ suc 𝒫
1o)) |
18 | | 3ioran 978 |
. . 3
⊢ (¬
(suc 𝒫 1o ∈ 3o ∨ suc 𝒫
1o = 3o ∨ 3o ∈ suc 𝒫
1o) ↔ (¬ suc 𝒫 1o ∈ 3o
∧ ¬ suc 𝒫 1o = 3o ∧ ¬
3o ∈ suc 𝒫 1o)) |
19 | 17, 18 | sylnib 666 |
. 2
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ (¬ suc 𝒫
1o ∈ 3o ∧ ¬ suc 𝒫 1o =
3o ∧ ¬ 3o ∈ suc 𝒫
1o)) |
20 | | sucpw1nel3 7147 |
. . . 4
⊢ ¬
suc 𝒫 1o ∈ 3o |
21 | 20 | a1i 9 |
. . 3
⊢ (¬
EXMID → ¬ suc 𝒫 1o ∈
3o) |
22 | | 2on 6362 |
. . . . . . 7
⊢
2o ∈ On |
23 | | suc11 4511 |
. . . . . . 7
⊢
((𝒫 1o ∈ On ∧ 2o ∈ On)
→ (suc 𝒫 1o = suc 2o ↔ 𝒫
1o = 2o)) |
24 | 1, 22, 23 | mp2an 423 |
. . . . . 6
⊢ (suc
𝒫 1o = suc 2o ↔ 𝒫 1o =
2o) |
25 | | df-3o 6355 |
. . . . . . 7
⊢
3o = suc 2o |
26 | 25 | eqeq2i 2165 |
. . . . . 6
⊢ (suc
𝒫 1o = 3o ↔ suc 𝒫 1o =
suc 2o) |
27 | | exmidpweq 6843 |
. . . . . 6
⊢
(EXMID ↔ 𝒫 1o =
2o) |
28 | 24, 26, 27 | 3bitr4ri 212 |
. . . . 5
⊢
(EXMID ↔ suc 𝒫 1o =
3o) |
29 | 28 | notbii 658 |
. . . 4
⊢ (¬
EXMID ↔ ¬ suc 𝒫 1o =
3o) |
30 | 29 | biimpi 119 |
. . 3
⊢ (¬
EXMID → ¬ suc 𝒫 1o =
3o) |
31 | | 3nelsucpw1 7148 |
. . . 4
⊢ ¬
3o ∈ suc 𝒫 1o |
32 | 31 | a1i 9 |
. . 3
⊢ (¬
EXMID → ¬ 3o ∈ suc 𝒫
1o) |
33 | 21, 30, 32 | 3jca 1162 |
. 2
⊢ (¬
EXMID → (¬ suc 𝒫 1o ∈
3o ∧ ¬ suc 𝒫 1o = 3o ∧
¬ 3o ∈ suc 𝒫 1o)) |
34 | 19, 33 | nsyl 618 |
1
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬
EXMID) |