ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri35 GIF version

Theorem onntri35 7297
Description: Double negated ordinal trichotomy.

There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑥 = 𝑦𝑦𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑦𝑥), (3) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥), (4) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑦𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7298), (3) implies (5) (onntri35 7297), (5) implies (1) (onntri51 7300), (2) implies (4) (onntri24 7302), (4) implies (5) (onntri45 7301), and (5) implies (2) (onntri52 7304).

Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥𝑦𝑥 = 𝑦𝑦𝑥 or the 𝑥𝑦𝑦𝑥 form, as shown in exmidontri 7299 and exmidontri2or 7303, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7305 and (4) by onntri2or 7306.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

Assertion
Ref Expression
onntri35 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri35
StepHypRef Expression
1 pw1on 7286 . . . . 5 𝒫 1o ∈ On
21onsuci 4548 . . . 4 suc 𝒫 1o ∈ On
3 3on 6480 . . . 4 3o ∈ On
4 eleq1 2256 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥𝑦 ↔ suc 𝒫 1o𝑦))
5 eqeq1 2200 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥 = 𝑦 ↔ suc 𝒫 1o = 𝑦))
6 eleq2 2257 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑦𝑥𝑦 ∈ suc 𝒫 1o))
74, 5, 63orbi123d 1322 . . . . . . 7 (𝑥 = suc 𝒫 1o → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
87notbid 668 . . . . . 6 (𝑥 = suc 𝒫 1o → (¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
98notbid 668 . . . . 5 (𝑥 = suc 𝒫 1o → (¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ¬ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
10 eleq2 2257 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o𝑦 ↔ suc 𝒫 1o ∈ 3o))
11 eqeq2 2203 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o = 𝑦 ↔ suc 𝒫 1o = 3o))
12 eleq1 2256 . . . . . . . 8 (𝑦 = 3o → (𝑦 ∈ suc 𝒫 1o ↔ 3o ∈ suc 𝒫 1o))
1310, 11, 123orbi123d 1322 . . . . . . 7 (𝑦 = 3o → ((suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
1413notbid 668 . . . . . 6 (𝑦 = 3o → (¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
1514notbid 668 . . . . 5 (𝑦 = 3o → (¬ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
169, 15rspc2v 2877 . . . 4 ((suc 𝒫 1o ∈ On ∧ 3o ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
172, 3, 16mp2an 426 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o))
18 3ioran 995 . . 3 (¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o) ↔ (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
1917, 18sylnib 677 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
20 sucpw1nel3 7293 . . . 4 ¬ suc 𝒫 1o ∈ 3o
2120a1i 9 . . 3 EXMID → ¬ suc 𝒫 1o ∈ 3o)
22 2on 6478 . . . . . . 7 2o ∈ On
23 suc11 4590 . . . . . . 7 ((𝒫 1o ∈ On ∧ 2o ∈ On) → (suc 𝒫 1o = suc 2o ↔ 𝒫 1o = 2o))
241, 22, 23mp2an 426 . . . . . 6 (suc 𝒫 1o = suc 2o ↔ 𝒫 1o = 2o)
25 df-3o 6471 . . . . . . 7 3o = suc 2o
2625eqeq2i 2204 . . . . . 6 (suc 𝒫 1o = 3o ↔ suc 𝒫 1o = suc 2o)
27 exmidpweq 6965 . . . . . 6 (EXMID ↔ 𝒫 1o = 2o)
2824, 26, 273bitr4ri 213 . . . . 5 (EXMID ↔ suc 𝒫 1o = 3o)
2928notbii 669 . . . 4 EXMID ↔ ¬ suc 𝒫 1o = 3o)
3029biimpi 120 . . 3 EXMID → ¬ suc 𝒫 1o = 3o)
31 3nelsucpw1 7294 . . . 4 ¬ 3o ∈ suc 𝒫 1o
3231a1i 9 . . 3 EXMID → ¬ 3o ∈ suc 𝒫 1o)
3321, 30, 323jca 1179 . 2 EXMID → (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
3419, 33nsyl 629 1 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  w3o 979  w3a 980   = wceq 1364  wcel 2164  wral 2472  𝒫 cpw 3601  EXMIDwem 4223  Oncon0 4394  suc csuc 4396  1oc1o 6462  2oc2o 6463  3oc3o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-1o 6469  df-2o 6470  df-3o 6471
This theorem is referenced by:  onntri3or  7305
  Copyright terms: Public domain W3C validator