Proof of Theorem onntri35
| Step | Hyp | Ref
 | Expression | 
| 1 |   | pw1on 7293 | 
. . . . 5
⊢ 𝒫
1o ∈ On | 
| 2 | 1 | onsuci 4552 | 
. . . 4
⊢ suc
𝒫 1o ∈ On | 
| 3 |   | 3on 6485 | 
. . . 4
⊢
3o ∈ On | 
| 4 |   | eleq1 2259 | 
. . . . . . . 8
⊢ (𝑥 = suc 𝒫 1o
→ (𝑥 ∈ 𝑦 ↔ suc 𝒫
1o ∈ 𝑦)) | 
| 5 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = suc 𝒫 1o
→ (𝑥 = 𝑦 ↔ suc 𝒫
1o = 𝑦)) | 
| 6 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑥 = suc 𝒫 1o
→ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝒫
1o)) | 
| 7 | 4, 5, 6 | 3orbi123d 1322 | 
. . . . . . 7
⊢ (𝑥 = suc 𝒫 1o
→ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (suc 𝒫 1o ∈
𝑦 ∨ suc 𝒫
1o = 𝑦 ∨
𝑦 ∈ suc 𝒫
1o))) | 
| 8 | 7 | notbid 668 | 
. . . . . 6
⊢ (𝑥 = suc 𝒫 1o
→ (¬ (𝑥 ∈
𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ¬ (suc 𝒫 1o
∈ 𝑦 ∨ suc 𝒫
1o = 𝑦 ∨
𝑦 ∈ suc 𝒫
1o))) | 
| 9 | 8 | notbid 668 | 
. . . . 5
⊢ (𝑥 = suc 𝒫 1o
→ (¬ ¬ (𝑥
∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ¬ ¬ (suc 𝒫
1o ∈ 𝑦 ∨
suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫
1o))) | 
| 10 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑦 = 3o → (suc
𝒫 1o ∈ 𝑦 ↔ suc 𝒫 1o ∈
3o)) | 
| 11 |   | eqeq2 2206 | 
. . . . . . . 8
⊢ (𝑦 = 3o → (suc
𝒫 1o = 𝑦
↔ suc 𝒫 1o = 3o)) | 
| 12 |   | eleq1 2259 | 
. . . . . . . 8
⊢ (𝑦 = 3o → (𝑦 ∈ suc 𝒫
1o ↔ 3o ∈ suc 𝒫
1o)) | 
| 13 | 10, 11, 12 | 3orbi123d 1322 | 
. . . . . . 7
⊢ (𝑦 = 3o → ((suc
𝒫 1o ∈ 𝑦 ∨ suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫 1o) ↔
(suc 𝒫 1o ∈ 3o ∨ suc 𝒫
1o = 3o ∨ 3o ∈ suc 𝒫
1o))) | 
| 14 | 13 | notbid 668 | 
. . . . . 6
⊢ (𝑦 = 3o → (¬
(suc 𝒫 1o ∈ 𝑦 ∨ suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫 1o) ↔
¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫
1o = 3o ∨ 3o ∈ suc 𝒫
1o))) | 
| 15 | 14 | notbid 668 | 
. . . . 5
⊢ (𝑦 = 3o → (¬
¬ (suc 𝒫 1o ∈ 𝑦 ∨ suc 𝒫 1o = 𝑦 ∨ 𝑦 ∈ suc 𝒫 1o) ↔
¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc
𝒫 1o = 3o ∨ 3o ∈ suc 𝒫
1o))) | 
| 16 | 9, 15 | rspc2v 2881 | 
. . . 4
⊢ ((suc
𝒫 1o ∈ On ∧ 3o ∈ On) →
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ (suc 𝒫
1o ∈ 3o ∨ suc 𝒫 1o =
3o ∨ 3o ∈ suc 𝒫
1o))) | 
| 17 | 2, 3, 16 | mp2an 426 | 
. . 3
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ (suc 𝒫
1o ∈ 3o ∨ suc 𝒫 1o =
3o ∨ 3o ∈ suc 𝒫
1o)) | 
| 18 |   | 3ioran 995 | 
. . 3
⊢ (¬
(suc 𝒫 1o ∈ 3o ∨ suc 𝒫
1o = 3o ∨ 3o ∈ suc 𝒫
1o) ↔ (¬ suc 𝒫 1o ∈ 3o
∧ ¬ suc 𝒫 1o = 3o ∧ ¬
3o ∈ suc 𝒫 1o)) | 
| 19 | 17, 18 | sylnib 677 | 
. 2
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ (¬ suc 𝒫
1o ∈ 3o ∧ ¬ suc 𝒫 1o =
3o ∧ ¬ 3o ∈ suc 𝒫
1o)) | 
| 20 |   | sucpw1nel3 7300 | 
. . . 4
⊢  ¬
suc 𝒫 1o ∈ 3o | 
| 21 | 20 | a1i 9 | 
. . 3
⊢ (¬
EXMID → ¬ suc 𝒫 1o ∈
3o) | 
| 22 |   | 2on 6483 | 
. . . . . . 7
⊢
2o ∈ On | 
| 23 |   | suc11 4594 | 
. . . . . . 7
⊢
((𝒫 1o ∈ On ∧ 2o ∈ On)
→ (suc 𝒫 1o = suc 2o ↔ 𝒫
1o = 2o)) | 
| 24 | 1, 22, 23 | mp2an 426 | 
. . . . . 6
⊢ (suc
𝒫 1o = suc 2o ↔ 𝒫 1o =
2o) | 
| 25 |   | df-3o 6476 | 
. . . . . . 7
⊢
3o = suc 2o | 
| 26 | 25 | eqeq2i 2207 | 
. . . . . 6
⊢ (suc
𝒫 1o = 3o ↔ suc 𝒫 1o =
suc 2o) | 
| 27 |   | exmidpweq 6970 | 
. . . . . 6
⊢
(EXMID ↔ 𝒫 1o =
2o) | 
| 28 | 24, 26, 27 | 3bitr4ri 213 | 
. . . . 5
⊢
(EXMID ↔ suc 𝒫 1o =
3o) | 
| 29 | 28 | notbii 669 | 
. . . 4
⊢ (¬
EXMID ↔ ¬ suc 𝒫 1o =
3o) | 
| 30 | 29 | biimpi 120 | 
. . 3
⊢ (¬
EXMID → ¬ suc 𝒫 1o =
3o) | 
| 31 |   | 3nelsucpw1 7301 | 
. . . 4
⊢  ¬
3o ∈ suc 𝒫 1o | 
| 32 | 31 | a1i 9 | 
. . 3
⊢ (¬
EXMID → ¬ 3o ∈ suc 𝒫
1o) | 
| 33 | 21, 30, 32 | 3jca 1179 | 
. 2
⊢ (¬
EXMID → (¬ suc 𝒫 1o ∈
3o ∧ ¬ suc 𝒫 1o = 3o ∧
¬ 3o ∈ suc 𝒫 1o)) | 
| 34 | 19, 33 | nsyl 629 | 
1
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On ¬
¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬
EXMID) |