ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri35 GIF version

Theorem onntri35 7166
Description: Double negated ordinal trichotomy.

There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑥 = 𝑦𝑦𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑦𝑥), (3) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥), (4) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑦𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7167), (3) implies (5) (onntri35 7166), (5) implies (1) (onntri51 7169), (2) implies (4) (onntri24 7171), (4) implies (5) (onntri45 7170), and (5) implies (2) (onntri52 7173).

Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥𝑦𝑥 = 𝑦𝑦𝑥 or the 𝑥𝑦𝑦𝑥 form, as shown in exmidontri 7168 and exmidontri2or 7172, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7174 and (4) by onntri2or 7175.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

Assertion
Ref Expression
onntri35 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri35
StepHypRef Expression
1 pw1on 7155 . . . . 5 𝒫 1o ∈ On
21onsuci 4474 . . . 4 suc 𝒫 1o ∈ On
3 3on 6371 . . . 4 3o ∈ On
4 eleq1 2220 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥𝑦 ↔ suc 𝒫 1o𝑦))
5 eqeq1 2164 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥 = 𝑦 ↔ suc 𝒫 1o = 𝑦))
6 eleq2 2221 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑦𝑥𝑦 ∈ suc 𝒫 1o))
74, 5, 63orbi123d 1293 . . . . . . 7 (𝑥 = suc 𝒫 1o → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
87notbid 657 . . . . . 6 (𝑥 = suc 𝒫 1o → (¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
98notbid 657 . . . . 5 (𝑥 = suc 𝒫 1o → (¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ¬ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o)))
10 eleq2 2221 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o𝑦 ↔ suc 𝒫 1o ∈ 3o))
11 eqeq2 2167 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o = 𝑦 ↔ suc 𝒫 1o = 3o))
12 eleq1 2220 . . . . . . . 8 (𝑦 = 3o → (𝑦 ∈ suc 𝒫 1o ↔ 3o ∈ suc 𝒫 1o))
1310, 11, 123orbi123d 1293 . . . . . . 7 (𝑦 = 3o → ((suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
1413notbid 657 . . . . . 6 (𝑦 = 3o → (¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
1514notbid 657 . . . . 5 (𝑦 = 3o → (¬ ¬ (suc 𝒫 1o𝑦 ∨ suc 𝒫 1o = 𝑦𝑦 ∈ suc 𝒫 1o) ↔ ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
169, 15rspc2v 2829 . . . 4 ((suc 𝒫 1o ∈ On ∧ 3o ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o)))
172, 3, 16mp2an 423 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o))
18 3ioran 978 . . 3 (¬ (suc 𝒫 1o ∈ 3o ∨ suc 𝒫 1o = 3o ∨ 3o ∈ suc 𝒫 1o) ↔ (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
1917, 18sylnib 666 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
20 sucpw1nel3 7162 . . . 4 ¬ suc 𝒫 1o ∈ 3o
2120a1i 9 . . 3 EXMID → ¬ suc 𝒫 1o ∈ 3o)
22 2on 6369 . . . . . . 7 2o ∈ On
23 suc11 4516 . . . . . . 7 ((𝒫 1o ∈ On ∧ 2o ∈ On) → (suc 𝒫 1o = suc 2o ↔ 𝒫 1o = 2o))
241, 22, 23mp2an 423 . . . . . 6 (suc 𝒫 1o = suc 2o ↔ 𝒫 1o = 2o)
25 df-3o 6362 . . . . . . 7 3o = suc 2o
2625eqeq2i 2168 . . . . . 6 (suc 𝒫 1o = 3o ↔ suc 𝒫 1o = suc 2o)
27 exmidpweq 6851 . . . . . 6 (EXMID ↔ 𝒫 1o = 2o)
2824, 26, 273bitr4ri 212 . . . . 5 (EXMID ↔ suc 𝒫 1o = 3o)
2928notbii 658 . . . 4 EXMID ↔ ¬ suc 𝒫 1o = 3o)
3029biimpi 119 . . 3 EXMID → ¬ suc 𝒫 1o = 3o)
31 3nelsucpw1 7163 . . . 4 ¬ 3o ∈ suc 𝒫 1o
3231a1i 9 . . 3 EXMID → ¬ 3o ∈ suc 𝒫 1o)
3321, 30, 323jca 1162 . 2 EXMID → (¬ suc 𝒫 1o ∈ 3o ∧ ¬ suc 𝒫 1o = 3o ∧ ¬ 3o ∈ suc 𝒫 1o))
3419, 33nsyl 618 1 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  w3o 962  w3a 963   = wceq 1335  wcel 2128  wral 2435  𝒫 cpw 3543  EXMIDwem 4155  Oncon0 4323  suc csuc 4325  1oc1o 6353  2oc2o 6354  3oc3o 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-exmid 4156  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-1o 6360  df-2o 6361  df-3o 6362
This theorem is referenced by:  onntri3or  7174
  Copyright terms: Public domain W3C validator