| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | ralimia 2591 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: 2ralimi 2594 ral2imi 2595 r19.26 2657 r19.29 2668 rr19.3v 2942 rr19.28v 2943 reu3 2993 uniiunlem 3313 reupick2 3490 uniss2 3918 ss2iun 3979 iineq2 3981 iunss2 4009 disjss2 4061 disjeq2 4062 disjnim 4072 repizf 4199 abnexg 4536 reusv3i 4549 tfis 4674 ssrel2 4808 issref 5110 dmmptg 5225 funco 5357 fununi 5388 fun11uni 5390 funimaexglem 5403 fnmpt 5449 fun11iun 5592 mpteqb 5724 chfnrn 5745 dffo5 5783 ffvresb 5797 fmptcof 5801 dfmptg 5813 mpo2eqb 6113 ralrnmpo 6118 rexrnmpo 6119 uchoice 6281 fnmpo 6346 mpoexxg 6354 smores 6436 riinerm 6753 ixpm 6875 difinfinf 7264 nninfwlpoimlemginf 7339 exmidontriimlem1 7399 onntri13 7419 onntri24 7423 cc4f 7451 cc4n 7453 cauappcvgprlemdisj 7834 caucvgsrlemasr 7973 caucvgsr 7985 suplocsr 7992 rexuz3 11496 recvguniq 11501 cau3lem 11620 caubnd2 11623 rexanre 11726 climi2 11794 climi0 11795 climcaucn 11857 ndvdssub 12436 gcdsupex 12473 gcdsupcl 12474 bezoutlemmo 12522 ptex 13292 mgmidmo 13400 issubg2m 13721 eltg2b 14722 neipsm 14822 lmcvg 14885 txlm 14947 metrest 15174 mulcncflem 15275 wlkvtxeledgg 16041 bj-charfunbi 16132 bj-indint 16252 bj-indind 16253 bj-bdfindis 16268 setindis 16288 bdsetindis 16290 neap0mkv 16396 |
| Copyright terms: Public domain | W3C validator |