| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | ralimia 2568 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2490 |
| This theorem is referenced by: 2ralimi 2571 ral2imi 2572 r19.26 2633 r19.29 2644 rr19.3v 2916 rr19.28v 2917 reu3 2967 uniiunlem 3286 reupick2 3463 uniss2 3886 ss2iun 3947 iineq2 3949 iunss2 3977 disjss2 4029 disjeq2 4030 disjnim 4040 repizf 4167 abnexg 4500 reusv3i 4513 tfis 4638 ssrel2 4772 issref 5073 dmmptg 5188 funco 5319 fununi 5350 fun11uni 5352 funimaexglem 5365 fnmpt 5411 fun11iun 5554 mpteqb 5682 chfnrn 5703 dffo5 5741 ffvresb 5755 fmptcof 5759 dfmptg 5771 mpo2eqb 6067 ralrnmpo 6072 rexrnmpo 6073 uchoice 6235 fnmpo 6300 mpoexxg 6308 smores 6390 riinerm 6707 ixpm 6829 difinfinf 7217 nninfwlpoimlemginf 7292 exmidontriimlem1 7348 onntri13 7365 onntri24 7369 cc4f 7396 cc4n 7398 cauappcvgprlemdisj 7779 caucvgsrlemasr 7918 caucvgsr 7930 suplocsr 7937 rexuz3 11371 recvguniq 11376 cau3lem 11495 caubnd2 11498 rexanre 11601 climi2 11669 climi0 11670 climcaucn 11732 ndvdssub 12311 gcdsupex 12348 gcdsupcl 12349 bezoutlemmo 12397 ptex 13166 mgmidmo 13274 issubg2m 13595 eltg2b 14596 neipsm 14696 lmcvg 14759 txlm 14821 metrest 15048 mulcncflem 15149 bj-charfunbi 15881 bj-indint 16001 bj-indind 16002 bj-bdfindis 16017 setindis 16037 bdsetindis 16039 neap0mkv 16143 |
| Copyright terms: Public domain | W3C validator |