![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimi | GIF version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | ralimia 2555 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: 2ralimi 2558 ral2imi 2559 r19.26 2620 r19.29 2631 rr19.3v 2899 rr19.28v 2900 reu3 2950 uniiunlem 3268 reupick2 3445 uniss2 3866 ss2iun 3927 iineq2 3929 iunss2 3957 disjss2 4009 disjeq2 4010 disjnim 4020 repizf 4145 abnexg 4477 reusv3i 4490 tfis 4615 ssrel2 4749 issref 5048 dmmptg 5163 funco 5294 fununi 5322 fun11uni 5324 funimaexglem 5337 fnmpt 5380 fun11iun 5521 mpteqb 5648 chfnrn 5669 dffo5 5707 ffvresb 5721 fmptcof 5725 dfmptg 5737 mpo2eqb 6028 ralrnmpo 6033 rexrnmpo 6034 uchoice 6190 fnmpo 6255 mpoexxg 6263 smores 6345 riinerm 6662 ixpm 6784 difinfinf 7160 nninfwlpoimlemginf 7235 exmidontriimlem1 7281 onntri13 7298 onntri24 7302 cc4f 7329 cc4n 7331 cauappcvgprlemdisj 7711 caucvgsrlemasr 7850 caucvgsr 7862 suplocsr 7869 rexuz3 11134 recvguniq 11139 cau3lem 11258 caubnd2 11261 rexanre 11364 climi2 11431 climi0 11432 climcaucn 11494 ndvdssub 12071 gcdsupex 12094 gcdsupcl 12095 bezoutlemmo 12143 ptex 12875 mgmidmo 12955 issubg2m 13259 eltg2b 14222 neipsm 14322 lmcvg 14385 txlm 14447 metrest 14674 mulcncflem 14761 bj-charfunbi 15303 bj-indint 15423 bj-indind 15424 bj-bdfindis 15439 setindis 15459 bdsetindis 15461 neap0mkv 15559 |
Copyright terms: Public domain | W3C validator |