Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimi | GIF version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | ralimia 2527 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: 2ralimi 2530 ral2imi 2531 r19.26 2592 r19.29 2603 rr19.3v 2865 rr19.28v 2866 reu3 2916 uniiunlem 3231 reupick2 3408 uniss2 3820 ss2iun 3881 iineq2 3883 iunss2 3911 disjss2 3962 disjeq2 3963 disjnim 3973 repizf 4098 abnexg 4424 reusv3i 4437 tfis 4560 ssrel2 4694 issref 4986 dmmptg 5101 funco 5228 fununi 5256 fun11uni 5258 funimaexglem 5271 fnmpt 5314 fun11iun 5453 mpteqb 5576 chfnrn 5596 dffo5 5634 ffvresb 5648 fmptcof 5652 dfmptg 5664 mpo2eqb 5951 ralrnmpo 5956 rexrnmpo 5957 fnmpo 6170 mpoexxg 6178 smores 6260 riinerm 6574 ixpm 6696 difinfinf 7066 exmidontriimlem1 7177 onntri13 7194 onntri24 7198 cc4f 7210 cc4n 7212 cauappcvgprlemdisj 7592 caucvgsrlemasr 7731 caucvgsr 7743 suplocsr 7750 rexuz3 10932 recvguniq 10937 cau3lem 11056 caubnd2 11059 rexanre 11162 climi2 11229 climi0 11230 climcaucn 11292 ndvdssub 11867 gcdsupex 11890 gcdsupcl 11891 bezoutlemmo 11939 mgmidmo 12603 eltg2b 12704 neipsm 12804 lmcvg 12867 txlm 12929 metrest 13156 mulcncflem 13240 bj-charfunbi 13703 bj-indint 13823 bj-indind 13824 bj-bdfindis 13839 setindis 13859 bdsetindis 13861 |
Copyright terms: Public domain | W3C validator |