![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimi | GIF version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | ralimia 2538 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 df-ral 2460 |
This theorem is referenced by: 2ralimi 2541 ral2imi 2542 r19.26 2603 r19.29 2614 rr19.3v 2876 rr19.28v 2877 reu3 2927 uniiunlem 3244 reupick2 3421 uniss2 3840 ss2iun 3901 iineq2 3903 iunss2 3931 disjss2 3983 disjeq2 3984 disjnim 3994 repizf 4119 abnexg 4446 reusv3i 4459 tfis 4582 ssrel2 4716 issref 5011 dmmptg 5126 funco 5256 fununi 5284 fun11uni 5286 funimaexglem 5299 fnmpt 5342 fun11iun 5482 mpteqb 5606 chfnrn 5627 dffo5 5665 ffvresb 5679 fmptcof 5683 dfmptg 5695 mpo2eqb 5983 ralrnmpo 5988 rexrnmpo 5989 fnmpo 6202 mpoexxg 6210 smores 6292 riinerm 6607 ixpm 6729 difinfinf 7099 nninfwlpoimlemginf 7173 exmidontriimlem1 7219 onntri13 7236 onntri24 7240 cc4f 7267 cc4n 7269 cauappcvgprlemdisj 7649 caucvgsrlemasr 7788 caucvgsr 7800 suplocsr 7807 rexuz3 10998 recvguniq 11003 cau3lem 11122 caubnd2 11125 rexanre 11228 climi2 11295 climi0 11296 climcaucn 11358 ndvdssub 11934 gcdsupex 11957 gcdsupcl 11958 bezoutlemmo 12006 ptex 12712 mgmidmo 12790 issubg2m 13047 eltg2b 13524 neipsm 13624 lmcvg 13687 txlm 13749 metrest 13976 mulcncflem 14060 bj-charfunbi 14533 bj-indint 14653 bj-indind 14654 bj-bdfindis 14669 setindis 14689 bdsetindis 14691 neap0mkv 14786 |
Copyright terms: Public domain | W3C validator |