| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralimi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | ralimia 2558 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: 2ralimi 2561 ral2imi 2562 r19.26 2623 r19.29 2634 rr19.3v 2903 rr19.28v 2904 reu3 2954 uniiunlem 3273 reupick2 3450 uniss2 3871 ss2iun 3932 iineq2 3934 iunss2 3962 disjss2 4014 disjeq2 4015 disjnim 4025 repizf 4150 abnexg 4482 reusv3i 4495 tfis 4620 ssrel2 4754 issref 5053 dmmptg 5168 funco 5299 fununi 5327 fun11uni 5329 funimaexglem 5342 fnmpt 5387 fun11iun 5528 mpteqb 5655 chfnrn 5676 dffo5 5714 ffvresb 5728 fmptcof 5732 dfmptg 5744 mpo2eqb 6036 ralrnmpo 6041 rexrnmpo 6042 uchoice 6204 fnmpo 6269 mpoexxg 6277 smores 6359 riinerm 6676 ixpm 6798 difinfinf 7176 nninfwlpoimlemginf 7251 exmidontriimlem1 7306 onntri13 7323 onntri24 7327 cc4f 7354 cc4n 7356 cauappcvgprlemdisj 7737 caucvgsrlemasr 7876 caucvgsr 7888 suplocsr 7895 rexuz3 11174 recvguniq 11179 cau3lem 11298 caubnd2 11301 rexanre 11404 climi2 11472 climi0 11473 climcaucn 11535 ndvdssub 12114 gcdsupex 12151 gcdsupcl 12152 bezoutlemmo 12200 ptex 12968 mgmidmo 13076 issubg2m 13397 eltg2b 14398 neipsm 14498 lmcvg 14561 txlm 14623 metrest 14850 mulcncflem 14951 bj-charfunbi 15565 bj-indint 15685 bj-indind 15686 bj-bdfindis 15701 setindis 15721 bdsetindis 15723 neap0mkv 15826 |
| Copyright terms: Public domain | W3C validator |