ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri13 Unicode version

Theorem onntri13 7239
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri13  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )

Proof of Theorem onntri13
StepHypRef Expression
1 nnral 2467 . 2  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  -.  -.  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 nnral 2467 . . 3  |-  ( -. 
-.  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. y  e.  On  -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ) )
32ralimi 2540 . 2  |-  ( A. x  e.  On  -.  -.  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. x  e.  On  A. y  e.  On  -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ) )
41, 3syl 14 1  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ w3o 977   A.wral 2455   Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  onntri3or  7246
  Copyright terms: Public domain W3C validator