ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnral GIF version

Theorem nnral 2520
Description: The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1695. (Contributed by Jim Kingdon, 1-Aug-2024.)
Assertion
Ref Expression
nnral (¬ ¬ ∀𝑥𝐴 𝜑 → ∀𝑥𝐴 ¬ ¬ 𝜑)

Proof of Theorem nnral
StepHypRef Expression
1 rexnalim 2519 . . 3 (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)
21con3i 635 . 2 (¬ ¬ ∀𝑥𝐴 𝜑 → ¬ ∃𝑥𝐴 ¬ 𝜑)
3 ralnex 2518 . 2 (∀𝑥𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
42, 3sylibr 134 1 (¬ ¬ ∀𝑥𝐴 𝜑 → ∀𝑥𝐴 ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wral 2508  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  onntri13  7411  onntri24  7415
  Copyright terms: Public domain W3C validator