Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orcoms | GIF version |
Description: Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.) |
Ref | Expression |
---|---|
orcoms.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
orcoms | ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 717 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
2 | orcoms.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
3 | 1, 2 | syl 14 | 1 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: olcs 726 dcn 832 xorbin 1374 19.33b2 1617 r19.30dc 2613 pwssunim 4262 omnimkv 7120 |
Copyright terms: Public domain | W3C validator |