![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcn | GIF version |
Description: The negation of a decidable proposition is decidable. The converse need not hold, but does hold for negated propositions, see dcnn 816. (Contributed by Jim Kingdon, 25-Mar-2018.) |
Ref | Expression |
---|---|
dcn | ⊢ (DECID 𝜑 → DECID ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 601 | . . . 4 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | orim2i 733 | . . 3 ⊢ ((¬ 𝜑 ∨ 𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑)) |
3 | 2 | orcoms 702 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑)) |
4 | df-dc 803 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
5 | df-dc 803 | . 2 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 680 DECID wdc 802 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 |
This theorem depends on definitions: df-bi 116 df-dc 803 |
This theorem is referenced by: stdcndc 813 stdcndcOLD 814 dcnn 816 pm5.18dc 849 pm4.67dc 853 pm2.54dc 857 imordc 863 pm4.54dc 868 annimdc 902 pm4.55dc 903 orandc 904 pm3.12dc 923 pm3.13dc 924 dn1dc 925 xor3dc 1346 dfbi3dc 1356 dcned 2286 gcdaddm 11514 |
Copyright terms: Public domain | W3C validator |