ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcn GIF version

Theorem dcn 843
Description: The negation of a decidable proposition is decidable. The converse need not hold, but does hold for negated propositions, see dcnn 849. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
dcn (DECID 𝜑DECID ¬ 𝜑)

Proof of Theorem dcn
StepHypRef Expression
1 notnot 630 . . . 4 (𝜑 → ¬ ¬ 𝜑)
21orim2i 762 . . 3 ((¬ 𝜑𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32orcoms 731 . 2 ((𝜑 ∨ ¬ 𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
5 df-dc 836 . 2 (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑))
63, 4, 53imtr4i 201 1 (DECID 𝜑DECID ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  stdcndc  846  stdcndcOLD  847  dcnn  849  pm5.18dc  884  pm4.67dc  888  pm2.54dc  892  imordc  898  pm4.54dc  903  annimdc  939  pm4.55dc  940  orandc  941  pm3.12dc  960  pm3.13dc  961  dn1dc  962  xor3dc  1398  dfbi3dc  1408  dcned  2370  gcdaddm  12121  prmdc  12268  pcmptdvds  12483  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator