ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcn GIF version

Theorem dcn 832
Description: The negation of a decidable proposition is decidable. The converse need not hold, but does hold for negated propositions, see dcnn 838. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
dcn (DECID 𝜑DECID ¬ 𝜑)

Proof of Theorem dcn
StepHypRef Expression
1 notnot 619 . . . 4 (𝜑 → ¬ ¬ 𝜑)
21orim2i 751 . . 3 ((¬ 𝜑𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32orcoms 720 . 2 ((𝜑 ∨ ¬ 𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4 df-dc 825 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
5 df-dc 825 . 2 (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑))
63, 4, 53imtr4i 200 1 (DECID 𝜑DECID ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  stdcndc  835  stdcndcOLD  836  dcnn  838  pm5.18dc  873  pm4.67dc  877  pm2.54dc  881  imordc  887  pm4.54dc  892  annimdc  927  pm4.55dc  928  orandc  929  pm3.12dc  948  pm3.13dc  949  dn1dc  950  xor3dc  1377  dfbi3dc  1387  dcned  2342  gcdaddm  11917  prmdc  12062  pcmptdvds  12275
  Copyright terms: Public domain W3C validator