ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcn GIF version

Theorem dcn 847
Description: The negation of a decidable proposition is decidable. The converse need not hold, but does hold for negated propositions, see dcnn 853. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
dcn (DECID 𝜑DECID ¬ 𝜑)

Proof of Theorem dcn
StepHypRef Expression
1 notnot 632 . . . 4 (𝜑 → ¬ ¬ 𝜑)
21orim2i 766 . . 3 ((¬ 𝜑𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32orcoms 735 . 2 ((𝜑 ∨ ¬ 𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4 df-dc 840 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
5 df-dc 840 . 2 (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑))
63, 4, 53imtr4i 201 1 (DECID 𝜑DECID ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  stdcndc  850  stdcndcOLD  851  dcnn  853  pm5.18dc  888  pm4.67dc  892  pm2.54dc  896  imordc  902  pm4.54dc  907  annimdc  943  pm4.55dc  944  orandc  945  pm3.12dc  964  pm3.13dc  965  dn1dc  966  ifpnst  994  xor3dc  1429  dfbi3dc  1439  dcned  2406  qdcle  10461  bitsdc  12453  gcdaddm  12500  prmdc  12647  pcmptdvds  12863  lgsquadlemofi  15749
  Copyright terms: Public domain W3C validator