ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssunim GIF version

Theorem pwssunim 4269
Description: The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwssunim ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))

Proof of Theorem pwssunim
StepHypRef Expression
1 ssequn2 3300 . . . . 5 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
2 pweq 3569 . . . . . 6 ((𝐴𝐵) = 𝐴 → 𝒫 (𝐴𝐵) = 𝒫 𝐴)
3 eqimss 3201 . . . . . 6 (𝒫 (𝐴𝐵) = 𝒫 𝐴 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴)
42, 3syl 14 . . . . 5 ((𝐴𝐵) = 𝐴 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴)
51, 4sylbi 120 . . . 4 (𝐵𝐴 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴)
6 ssequn1 3297 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
7 pweq 3569 . . . . . 6 ((𝐴𝐵) = 𝐵 → 𝒫 (𝐴𝐵) = 𝒫 𝐵)
8 eqimss 3201 . . . . . 6 (𝒫 (𝐴𝐵) = 𝒫 𝐵 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵)
97, 8syl 14 . . . . 5 ((𝐴𝐵) = 𝐵 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵)
106, 9sylbi 120 . . . 4 (𝐴𝐵 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵)
115, 10orim12i 754 . . 3 ((𝐵𝐴𝐴𝐵) → (𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵))
1211orcoms 725 . 2 ((𝐴𝐵𝐵𝐴) → (𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵))
13 ssun 3306 . 2 ((𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
1412, 13syl 14 1 ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703   = wceq 1348  cun 3119  wss 3121  𝒫 cpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by:  pwunim  4271
  Copyright terms: Public domain W3C validator