ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssunim GIF version

Theorem pwssunim 4338
Description: The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwssunim ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))

Proof of Theorem pwssunim
StepHypRef Expression
1 ssequn2 3350 . . . . 5 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
2 pweq 3623 . . . . . 6 ((𝐴𝐵) = 𝐴 → 𝒫 (𝐴𝐵) = 𝒫 𝐴)
3 eqimss 3251 . . . . . 6 (𝒫 (𝐴𝐵) = 𝒫 𝐴 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴)
42, 3syl 14 . . . . 5 ((𝐴𝐵) = 𝐴 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴)
51, 4sylbi 121 . . . 4 (𝐵𝐴 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴)
6 ssequn1 3347 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
7 pweq 3623 . . . . . 6 ((𝐴𝐵) = 𝐵 → 𝒫 (𝐴𝐵) = 𝒫 𝐵)
8 eqimss 3251 . . . . . 6 (𝒫 (𝐴𝐵) = 𝒫 𝐵 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵)
97, 8syl 14 . . . . 5 ((𝐴𝐵) = 𝐵 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵)
106, 9sylbi 121 . . . 4 (𝐴𝐵 → 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵)
115, 10orim12i 761 . . 3 ((𝐵𝐴𝐴𝐵) → (𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵))
1211orcoms 732 . 2 ((𝐴𝐵𝐵𝐴) → (𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵))
13 ssun 3356 . 2 ((𝒫 (𝐴𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴𝐵) ⊆ 𝒫 𝐵) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
1412, 13syl 14 1 ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  cun 3168  wss 3170  𝒫 cpw 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622
This theorem is referenced by:  pwunim  4340
  Copyright terms: Public domain W3C validator