Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwssunim | GIF version |
Description: The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.) |
Ref | Expression |
---|---|
pwssunim | ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 3300 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
2 | pweq 3569 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐴) | |
3 | eqimss 3201 | . . . . . 6 ⊢ (𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
5 | 1, 4 | sylbi 120 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
6 | ssequn1 3297 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
7 | pweq 3569 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐵) | |
8 | eqimss 3201 | . . . . . 6 ⊢ (𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
10 | 6, 9 | sylbi 120 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
11 | 5, 10 | orim12i 754 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∨ 𝐴 ⊆ 𝐵) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
12 | 11 | orcoms 725 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
13 | ssun 3306 | . 2 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) | |
14 | 12, 13 | syl 14 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 = wceq 1348 ∪ cun 3119 ⊆ wss 3121 𝒫 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: pwunim 4271 |
Copyright terms: Public domain | W3C validator |