| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwssunim | GIF version | ||
| Description: The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.) |
| Ref | Expression |
|---|---|
| pwssunim | ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 3377 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
| 2 | pweq 3652 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐴) | |
| 3 | eqimss 3278 | . . . . . 6 ⊢ (𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
| 5 | 1, 4 | sylbi 121 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
| 6 | ssequn1 3374 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 7 | pweq 3652 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐵) | |
| 8 | eqimss 3278 | . . . . . 6 ⊢ (𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
| 10 | 6, 9 | sylbi 121 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
| 11 | 5, 10 | orim12i 764 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∨ 𝐴 ⊆ 𝐵) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
| 12 | 11 | orcoms 735 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
| 13 | ssun 3383 | . 2 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) | |
| 14 | 12, 13 | syl 14 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∪ cun 3195 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: pwunim 4374 |
| Copyright terms: Public domain | W3C validator |