ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.30dc GIF version

Theorem r19.30dc 2678
Description: Restricted quantifier version of 19.30dc 1673. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.)
Assertion
Ref Expression
r19.30dc ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.30dc
StepHypRef Expression
1 ralnex 2518 . . . . 5 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
2 pm2.53 727 . . . . . . 7 ((𝜓𝜑) → (¬ 𝜓𝜑))
32orcoms 735 . . . . . 6 ((𝜑𝜓) → (¬ 𝜓𝜑))
43ral2imi 2595 . . . . 5 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 ¬ 𝜓 → ∀𝑥𝐴 𝜑))
51, 4biimtrrid 153 . . . 4 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑))
65adantr 276 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑))
7 dfordc 897 . . . 4 (DECID𝑥𝐴 𝜓 → ((∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜑) ↔ (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑)))
87adantl 277 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → ((∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜑) ↔ (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑)))
96, 8mpbird 167 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜑))
109orcomd 734 1 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  wral 2508  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-gen 1495  ax-ie2 1540
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-ral 2513  df-rex 2514
This theorem is referenced by:  exmidontriimlem1  7399
  Copyright terms: Public domain W3C validator