ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.30dc GIF version

Theorem r19.30dc 2613
Description: Restricted quantifier version of 19.30dc 1615. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.)
Assertion
Ref Expression
r19.30dc ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.30dc
StepHypRef Expression
1 ralnex 2454 . . . . 5 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
2 pm2.53 712 . . . . . . 7 ((𝜓𝜑) → (¬ 𝜓𝜑))
32orcoms 720 . . . . . 6 ((𝜑𝜓) → (¬ 𝜓𝜑))
43ral2imi 2531 . . . . 5 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 ¬ 𝜓 → ∀𝑥𝐴 𝜑))
51, 4syl5bir 152 . . . 4 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑))
65adantr 274 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑))
7 dfordc 882 . . . 4 (DECID𝑥𝐴 𝜓 → ((∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜑) ↔ (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑)))
87adantl 275 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → ((∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜑) ↔ (¬ ∃𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜑)))
96, 8mpbird 166 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜑))
109orcomd 719 1 ((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  wral 2444  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-ral 2449  df-rex 2450
This theorem is referenced by:  exmidontriimlem1  7177
  Copyright terms: Public domain W3C validator