| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.30dc | GIF version | ||
| Description: Restricted quantifier version of 19.30dc 1641. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.) |
| Ref | Expression |
|---|---|
| r19.30dc | ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 2485 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | pm2.53 723 | . . . . . . 7 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
| 3 | 2 | orcoms 731 | . . . . . 6 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜓 → 𝜑)) |
| 4 | 3 | ral2imi 2562 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 5 | 1, 4 | biimtrrid 153 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 7 | dfordc 893 | . . . 4 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜓 → ((∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑))) | |
| 8 | 7 | adantl 277 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → ((∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑))) |
| 9 | 6, 8 | mpbird 167 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑)) |
| 10 | 9 | orcomd 730 | 1 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∀wral 2475 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: exmidontriimlem1 7288 |
| Copyright terms: Public domain | W3C validator |