Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.30dc | GIF version |
Description: Restricted quantifier version of 19.30dc 1620. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.) |
Ref | Expression |
---|---|
r19.30dc | ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2458 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
2 | pm2.53 717 | . . . . . . 7 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
3 | 2 | orcoms 725 | . . . . . 6 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜓 → 𝜑)) |
4 | 3 | ral2imi 2535 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
5 | 1, 4 | syl5bir 152 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
6 | 5 | adantr 274 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
7 | dfordc 887 | . . . 4 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜓 → ((∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑))) | |
8 | 7 | adantl 275 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → ((∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜑))) |
9 | 6, 8 | mpbird 166 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑)) |
10 | 9 | orcomd 724 | 1 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∧ DECID ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 ∀wral 2448 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-gen 1442 ax-ie2 1487 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-fal 1354 df-ral 2453 df-rex 2454 |
This theorem is referenced by: exmidontriimlem1 7198 |
Copyright terms: Public domain | W3C validator |