| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.33b2 | GIF version | ||
| Description: The antecedent provides a condition implying the converse of 19.33 1498. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1644 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.33b2 | ⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 729 | . . . . 5 ⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜓 ∨ ¬ ∃𝑥𝜑)) | |
| 2 | alnex 1513 | . . . . . 6 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 3 | alnex 1513 | . . . . . 6 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 4 | 2, 3 | orbi12i 765 | . . . . 5 ⊢ ((∀𝑥 ¬ 𝜓 ∨ ∀𝑥 ¬ 𝜑) ↔ (¬ ∃𝑥𝜓 ∨ ¬ ∃𝑥𝜑)) |
| 5 | 1, 4 | bitr4i 187 | . . . 4 ⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) ↔ (∀𝑥 ¬ 𝜓 ∨ ∀𝑥 ¬ 𝜑)) |
| 6 | pm2.53 723 | . . . . . . 7 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
| 7 | 6 | orcoms 731 | . . . . . 6 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜓 → 𝜑)) |
| 8 | 7 | al2imi 1472 | . . . . 5 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥 ¬ 𝜓 → ∀𝑥𝜑)) |
| 9 | pm2.53 723 | . . . . . 6 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 10 | 9 | al2imi 1472 | . . . . 5 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥 ¬ 𝜑 → ∀𝑥𝜓)) |
| 11 | 8, 10 | orim12d 787 | . . . 4 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → ((∀𝑥 ¬ 𝜓 ∨ ∀𝑥 ¬ 𝜑) → (∀𝑥𝜑 ∨ ∀𝑥𝜓))) |
| 12 | 5, 11 | biimtrid 152 | . . 3 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥𝜑 ∨ ∀𝑥𝜓))) |
| 13 | 12 | com12 30 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∀𝑥𝜓))) |
| 14 | 19.33 1498 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | |
| 15 | 13, 14 | impbid1 142 | 1 ⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: 19.33bdc 1644 |
| Copyright terms: Public domain | W3C validator |