| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omnimkv | GIF version | ||
| Description: An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
| Ref | Expression |
|---|---|
| omnimkv | ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isomni 7238 | . . . 4 ⊢ (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) | |
| 2 | 1 | ibi 176 | . . 3 ⊢ (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 3 | pm2.53 724 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | |
| 4 | 3 | orcoms 732 | . . . . . 6 ⊢ ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ Omni → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
| 6 | 5 | imim2d 54 | . . . 4 ⊢ (𝐴 ∈ Omni → ((𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → (𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 7 | 6 | alimdv 1902 | . . 3 ⊢ (𝐴 ∈ Omni → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 8 | 2, 7 | mpd 13 | . 2 ⊢ (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
| 9 | ismkv 7255 | . 2 ⊢ (𝐴 ∈ Omni → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | |
| 10 | 8, 9 | mpbird 167 | 1 ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 ∀wal 1371 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 ∅c0 3460 ⟶wf 5267 ‘cfv 5271 1oc1o 6495 2oc2o 6496 Omnicomni 7236 Markovcmarkov 7253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-fn 5274 df-f 5275 df-omni 7237 df-markov 7254 |
| This theorem is referenced by: exmidmp 7259 |
| Copyright terms: Public domain | W3C validator |