| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > omnimkv | GIF version | ||
| Description: An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| omnimkv | ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isomni 7202 | . . . 4 ⊢ (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) | |
| 2 | 1 | ibi 176 | . . 3 ⊢ (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | 
| 3 | pm2.53 723 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | |
| 4 | 3 | orcoms 731 | . . . . . 6 ⊢ ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | 
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ Omni → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | 
| 6 | 5 | imim2d 54 | . . . 4 ⊢ (𝐴 ∈ Omni → ((𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → (𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | 
| 7 | 6 | alimdv 1893 | . . 3 ⊢ (𝐴 ∈ Omni → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | 
| 8 | 2, 7 | mpd 13 | . 2 ⊢ (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | 
| 9 | ismkv 7219 | . 2 ⊢ (𝐴 ∈ Omni → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | |
| 10 | 8, 9 | mpbird 167 | 1 ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∅c0 3450 ⟶wf 5254 ‘cfv 5258 1oc1o 6467 2oc2o 6468 Omnicomni 7200 Markovcmarkov 7217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-fn 5261 df-f 5262 df-omni 7201 df-markov 7218 | 
| This theorem is referenced by: exmidmp 7223 | 
| Copyright terms: Public domain | W3C validator |