Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omnimkv | GIF version |
Description: An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
Ref | Expression |
---|---|
omnimkv | ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomni 7112 | . . . 4 ⊢ (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) | |
2 | 1 | ibi 175 | . . 3 ⊢ (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
3 | pm2.53 717 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | |
4 | 3 | orcoms 725 | . . . . . 6 ⊢ ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) |
5 | 4 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ Omni → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
6 | 5 | imim2d 54 | . . . 4 ⊢ (𝐴 ∈ Omni → ((𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → (𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
7 | 6 | alimdv 1872 | . . 3 ⊢ (𝐴 ∈ Omni → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
8 | 2, 7 | mpd 13 | . 2 ⊢ (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
9 | ismkv 7129 | . 2 ⊢ (𝐴 ∈ Omni → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | |
10 | 8, 9 | mpbird 166 | 1 ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∅c0 3414 ⟶wf 5194 ‘cfv 5198 1oc1o 6388 2oc2o 6389 Omnicomni 7110 Markovcmarkov 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-fn 5201 df-f 5202 df-omni 7111 df-markov 7128 |
This theorem is referenced by: exmidmp 7133 |
Copyright terms: Public domain | W3C validator |