ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omnimkv GIF version

Theorem omnimkv 7319
Description: An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
omnimkv (𝐴 ∈ Omni → 𝐴 ∈ Markov)

Proof of Theorem omnimkv
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomni 7299 . . . 4 (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
21ibi 176 . . 3 (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)))
3 pm2.53 727 . . . . . . 7 ((∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
43orcoms 735 . . . . . 6 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
54a1i 9 . . . . 5 (𝐴 ∈ Omni → ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
65imim2d 54 . . . 4 (𝐴 ∈ Omni → ((𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
76alimdv 1925 . . 3 (𝐴 ∈ Omni → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
82, 7mpd 13 . 2 (𝐴 ∈ Omni → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
9 ismkv 7316 . 2 (𝐴 ∈ Omni → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
108, 9mpbird 167 1 (𝐴 ∈ Omni → 𝐴 ∈ Markov)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  wal 1393   = wceq 1395  wcel 2200  wral 2508  wrex 2509  c0 3491  wf 5313  cfv 5317  1oc1o 6553  2oc2o 6554  Omnicomni 7297  Markovcmarkov 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-fn 5320  df-f 5321  df-omni 7298  df-markov 7315
This theorem is referenced by:  exmidmp  7320
  Copyright terms: Public domain W3C validator