| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3l | GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 impd 254 3imp231 1221 expdcom 1485 nebidc 2480 sbcimdv 3094 prel12 3849 reusv3 4551 relcoi1 5260 oprabid 6039 poxp 6384 reldmtpos 6405 tfrlem9 6471 tfri3 6519 ordiso2 7210 distrlem5prl 7781 distrlem5pru 7782 bndndx 9376 uzind2 9567 leexp1a 10824 swrdswrdlem 11244 swrdswrd 11245 swrdccat3blem 11279 reuccatpfxs1lem 11286 cncongr1 12633 infpnlem1 12890 gausslemma2dlem1a 15745 uhgr2edg 16012 bj-inf2vnlem2 16358 |
| Copyright terms: Public domain | W3C validator |