ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l GIF version

Theorem com3l 81
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
com3l (𝜓 → (𝜒 → (𝜑𝜃)))

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com3r 79 . 2 (𝜒 → (𝜑 → (𝜓𝜃)))
32com3r 79 1 (𝜓 → (𝜒 → (𝜑𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  impd  254  3imp231  1221  expdcom  1485  nebidc  2480  sbcimdv  3094  prel12  3849  reusv3  4551  relcoi1  5260  oprabid  6039  poxp  6384  reldmtpos  6405  tfrlem9  6471  tfri3  6519  ordiso2  7210  distrlem5prl  7781  distrlem5pru  7782  bndndx  9376  uzind2  9567  leexp1a  10824  swrdswrdlem  11244  swrdswrd  11245  swrdccat3blem  11279  reuccatpfxs1lem  11286  cncongr1  12633  infpnlem1  12890  gausslemma2dlem1a  15745  uhgr2edg  16012  bj-inf2vnlem2  16358
  Copyright terms: Public domain W3C validator