| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3l | GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 impd 254 3imp231 1199 expdcom 1453 nebidc 2447 sbcimdv 3055 prel12 3802 reusv3 4496 relcoi1 5202 oprabid 5957 poxp 6299 reldmtpos 6320 tfrlem9 6386 tfri3 6434 ordiso2 7110 distrlem5prl 7670 distrlem5pru 7671 bndndx 9265 uzind2 9455 leexp1a 10703 cncongr1 12296 infpnlem1 12553 gausslemma2dlem1a 15383 bj-inf2vnlem2 15701 |
| Copyright terms: Public domain | W3C validator |