ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l GIF version

Theorem com3l 81
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
com3l (𝜓 → (𝜒 → (𝜑𝜃)))

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com3r 79 . 2 (𝜒 → (𝜑 → (𝜓𝜃)))
32com3r 79 1 (𝜓 → (𝜒 → (𝜑𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  impd  254  3imp231  1197  expdcom  1442  nebidc  2427  sbcimdv  3028  prel12  3771  reusv3  4460  relcoi1  5160  oprabid  5906  poxp  6232  reldmtpos  6253  tfrlem9  6319  tfri3  6367  ordiso2  7033  distrlem5prl  7584  distrlem5pru  7585  bndndx  9174  uzind2  9364  leexp1a  10574  cncongr1  12102  infpnlem1  12356  bj-inf2vnlem2  14693
  Copyright terms: Public domain W3C validator