![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com3l | GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4l 84 impd 254 3imp231 1199 expdcom 1453 nebidc 2444 sbcimdv 3051 prel12 3797 reusv3 4491 relcoi1 5197 oprabid 5950 poxp 6285 reldmtpos 6306 tfrlem9 6372 tfri3 6420 ordiso2 7094 distrlem5prl 7646 distrlem5pru 7647 bndndx 9239 uzind2 9429 leexp1a 10665 cncongr1 12241 infpnlem1 12497 gausslemma2dlem1a 15174 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |