![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com3l | GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4l 84 impd 254 3imp231 1197 expdcom 1442 nebidc 2427 sbcimdv 3029 prel12 3772 reusv3 4461 relcoi1 5161 oprabid 5907 poxp 6233 reldmtpos 6254 tfrlem9 6320 tfri3 6368 ordiso2 7034 distrlem5prl 7585 distrlem5pru 7586 bndndx 9175 uzind2 9365 leexp1a 10575 cncongr1 12103 infpnlem1 12357 bj-inf2vnlem2 14726 |
Copyright terms: Public domain | W3C validator |