| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3l | GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 impd 254 3imp231 1200 expdcom 1463 nebidc 2457 sbcimdv 3065 prel12 3814 reusv3 4511 relcoi1 5219 oprabid 5983 poxp 6325 reldmtpos 6346 tfrlem9 6412 tfri3 6460 ordiso2 7144 distrlem5prl 7706 distrlem5pru 7707 bndndx 9301 uzind2 9492 leexp1a 10746 swrdswrdlem 11163 swrdswrd 11164 cncongr1 12469 infpnlem1 12726 gausslemma2dlem1a 15579 bj-inf2vnlem2 15981 |
| Copyright terms: Public domain | W3C validator |