| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3l | GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 impd 254 3imp231 1202 expdcom 1465 nebidc 2460 sbcimdv 3074 prel12 3828 reusv3 4528 relcoi1 5236 oprabid 6006 poxp 6348 reldmtpos 6369 tfrlem9 6435 tfri3 6483 ordiso2 7170 distrlem5prl 7741 distrlem5pru 7742 bndndx 9336 uzind2 9527 leexp1a 10783 swrdswrdlem 11202 swrdswrd 11203 swrdccat3blem 11237 reuccatpfxs1lem 11244 cncongr1 12591 infpnlem1 12848 gausslemma2dlem1a 15702 uhgr2edg 15969 bj-inf2vnlem2 16244 |
| Copyright terms: Public domain | W3C validator |