Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > com3l | GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3l | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com3r 79 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4l 84 impd 252 3imp231 1187 expdcom 1430 nebidc 2416 sbcimdv 3016 prel12 3751 reusv3 4438 relcoi1 5135 oprabid 5874 poxp 6200 reldmtpos 6221 tfrlem9 6287 tfri3 6335 ordiso2 7000 distrlem5prl 7527 distrlem5pru 7528 bndndx 9113 uzind2 9303 leexp1a 10510 cncongr1 12035 infpnlem1 12289 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |