Proof of Theorem sbi2v
Step | Hyp | Ref
| Expression |
1 | | 19.38 1664 |
. . 3
⊢
((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓))) |
2 | | pm3.3 259 |
. . . . 5
⊢ (((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓)) → (𝑥 = 𝑦 → (𝜑 → (𝑥 = 𝑦 → 𝜓)))) |
3 | | pm2.04 82 |
. . . . 5
⊢ ((𝜑 → (𝑥 = 𝑦 → 𝜓)) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) |
4 | 2, 3 | syli 37 |
. . . 4
⊢ (((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓)) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) |
5 | 4 | alimi 1443 |
. . 3
⊢
(∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓)) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
6 | 1, 5 | syl 14 |
. 2
⊢
((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
7 | | sb5 1875 |
. . 3
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | | sb6 1874 |
. . 3
⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
9 | 7, 8 | imbi12i 238 |
. 2
⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
10 | | sb6 1874 |
. 2
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
11 | 6, 9, 10 | 3imtr4i 200 |
1
⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |