![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbi2v | GIF version |
Description: Reverse direction of sbimv 1893. (Contributed by Jim Kingdon, 18-Jan-2018.) |
Ref | Expression |
---|---|
sbi2v | ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 1676 | . . 3 ⊢ ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓))) | |
2 | pm3.3 261 | . . . . 5 ⊢ (((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓)) → (𝑥 = 𝑦 → (𝜑 → (𝑥 = 𝑦 → 𝜓)))) | |
3 | pm2.04 82 | . . . . 5 ⊢ ((𝜑 → (𝑥 = 𝑦 → 𝜓)) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
4 | 2, 3 | syli 37 | . . . 4 ⊢ (((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓)) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) |
5 | 4 | alimi 1455 | . . 3 ⊢ (∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜓)) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
6 | 1, 5 | syl 14 | . 2 ⊢ ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
7 | sb5 1887 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
8 | sb6 1886 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
9 | 7, 8 | imbi12i 239 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
10 | sb6 1886 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
11 | 6, 9, 10 | 3imtr4i 201 | 1 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1492 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: sbimv 1893 |
Copyright terms: Public domain | W3C validator |