ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.43d GIF version

Theorem pm2.43d 50
Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
pm2.43d.1 (𝜑 → (𝜓 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43d (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.43d
StepHypRef Expression
1 id 19 . 2 (𝜓𝜓)
2 pm2.43d.1 . 2 (𝜑 → (𝜓 → (𝜓𝜒)))
31, 2mpdi 43 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  loolin  102  pm2.18dc  857  sbcof2  1834  rgen2a  2561  rspct  2871  po2nr  4360  ordsuc  4615  funssres  5318  2elresin  5392  f1imass  5850  smoel  6393  tfri3  6460  nnmass  6580  sbthlem1  7066  genpcdl  7639  genpcuu  7640  recexprlemss1l  7755  recexprlemss1u  7756  grpid  13415  uniopn  14517  elabgft1  15788  bj-rspgt  15796
  Copyright terms: Public domain W3C validator