Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version |
Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 101 pm2.18dc 850 sbcof2 1803 rgen2a 2524 rspct 2827 po2nr 4294 ordsuc 4547 funssres 5240 2elresin 5309 f1imass 5753 smoel 6279 tfri3 6346 nnmass 6466 sbthlem1 6934 genpcdl 7481 genpcuu 7482 recexprlemss1l 7597 recexprlemss1u 7598 grpid 12742 uniopn 12793 elabgft1 13813 bj-rspgt 13821 |
Copyright terms: Public domain | W3C validator |