| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version | ||
| Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 102 pm2.18dc 859 sbcof2 1836 rgen2a 2564 rspct 2880 po2nr 4377 ordsuc 4632 funssres 5336 2elresin 5410 f1imass 5871 smoel 6416 tfri3 6483 nnmass 6603 sbthlem1 7092 genpcdl 7674 genpcuu 7675 recexprlemss1l 7790 recexprlemss1u 7791 grpid 13538 uniopn 14640 elabgft1 16052 bj-rspgt 16060 |
| Copyright terms: Public domain | W3C validator |