Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version |
Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 101 pm2.18dc 850 sbcof2 1803 rgen2a 2524 rspct 2827 po2nr 4292 ordsuc 4545 funssres 5238 2elresin 5307 f1imass 5751 smoel 6277 tfri3 6344 nnmass 6464 sbthlem1 6932 genpcdl 7474 genpcuu 7475 recexprlemss1l 7590 recexprlemss1u 7591 grpid 12735 uniopn 12758 elabgft1 13778 bj-rspgt 13786 |
Copyright terms: Public domain | W3C validator |