![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version |
Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 102 pm2.18dc 856 sbcof2 1821 rgen2a 2544 rspct 2849 po2nr 4324 ordsuc 4577 funssres 5274 2elresin 5343 f1imass 5792 smoel 6320 tfri3 6387 nnmass 6507 sbthlem1 6976 genpcdl 7538 genpcuu 7539 recexprlemss1l 7654 recexprlemss1u 7655 grpid 12956 uniopn 13905 elabgft1 14934 bj-rspgt 14942 |
Copyright terms: Public domain | W3C validator |