| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version | ||
| Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 102 pm2.18dc 856 sbcof2 1824 rgen2a 2551 rspct 2861 po2nr 4345 ordsuc 4600 funssres 5301 2elresin 5372 f1imass 5824 smoel 6367 tfri3 6434 nnmass 6554 sbthlem1 7032 genpcdl 7605 genpcuu 7606 recexprlemss1l 7721 recexprlemss1u 7722 grpid 13243 uniopn 14323 elabgft1 15510 bj-rspgt 15518 |
| Copyright terms: Public domain | W3C validator |