![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version |
Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: loolin 101 pm2.18dc 791 sbcof2 1745 rgen2a 2440 rspct 2729 po2nr 4160 ordsuc 4407 funssres 5090 2elresin 5159 f1imass 5591 smoel 6103 tfri3 6170 nnmass 6288 sbthlem1 6746 genpcdl 7175 genpcuu 7176 recexprlemss1l 7291 recexprlemss1u 7292 uniopn 11867 elabgft1 12390 bj-rspgt 12398 |
Copyright terms: Public domain | W3C validator |