| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version | ||
| Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 102 pm2.18dc 856 sbcof2 1824 rgen2a 2551 rspct 2861 po2nr 4344 ordsuc 4599 funssres 5300 2elresin 5369 f1imass 5821 smoel 6358 tfri3 6425 nnmass 6545 sbthlem1 7023 genpcdl 7586 genpcuu 7587 recexprlemss1l 7702 recexprlemss1u 7703 grpid 13171 uniopn 14237 elabgft1 15424 bj-rspgt 15432 |
| Copyright terms: Public domain | W3C validator |