![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version |
Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 102 pm2.18dc 855 sbcof2 1810 rgen2a 2531 rspct 2834 po2nr 4309 ordsuc 4562 funssres 5258 2elresin 5327 f1imass 5774 smoel 6300 tfri3 6367 nnmass 6487 sbthlem1 6955 genpcdl 7517 genpcuu 7518 recexprlemss1l 7633 recexprlemss1u 7634 grpid 12911 uniopn 13471 elabgft1 14500 bj-rspgt 14508 |
Copyright terms: Public domain | W3C validator |