| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version | ||
| Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 102 pm2.18dc 856 sbcof2 1824 rgen2a 2551 rspct 2861 po2nr 4345 ordsuc 4600 funssres 5301 2elresin 5370 f1imass 5822 smoel 6359 tfri3 6426 nnmass 6546 sbthlem1 7024 genpcdl 7588 genpcuu 7589 recexprlemss1l 7704 recexprlemss1u 7705 grpid 13181 uniopn 14247 elabgft1 15434 bj-rspgt 15442 |
| Copyright terms: Public domain | W3C validator |