| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43d | GIF version | ||
| Description: Deduction absorbing redundant antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 102 pm2.18dc 857 sbcof2 1834 rgen2a 2561 rspct 2871 po2nr 4360 ordsuc 4615 funssres 5318 2elresin 5392 f1imass 5850 smoel 6393 tfri3 6460 nnmass 6580 sbthlem1 7066 genpcdl 7639 genpcuu 7640 recexprlemss1l 7755 recexprlemss1u 7756 grpid 13415 uniopn 14517 elabgft1 15788 bj-rspgt 15796 |
| Copyright terms: Public domain | W3C validator |