| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a2i | GIF version | ||
| Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: imim2i 12 mpd 13 sylcom 28 pm2.43 53 ancl 318 ancr 321 anc2r 328 pm2.65 661 pm2.18dc 857 con4biddc 859 hbim1 1594 sbcof2 1834 ralimia 2568 ceqsalg 2802 rspct 2874 elabgt 2918 fvmptt 5683 ordiso2 7151 bj-exlimmp 15839 bj-rspgt 15856 bj-indint 16001 |
| Copyright terms: Public domain | W3C validator |