ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a2i GIF version

Theorem a2i 11
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a2i.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
a2i ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem a2i
StepHypRef Expression
1 a2i.1 . 2 (𝜑 → (𝜓𝜒))
2 ax-2 7 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
31, 2ax-mp 5 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-2 7
This theorem is referenced by:  imim2i  12  mpd  13  sylcom  28  pm2.43  53  ancl  316  ancr  319  anc2r  326  pm2.65  649  pm2.18dc  845  con4biddc  847  hbim1  1558  sbcof2  1798  ralimia  2527  ceqsalg  2754  rspct  2823  elabgt  2867  fvmptt  5577  ordiso2  7000  bj-exlimmp  13650  bj-rspgt  13667  bj-indint  13813
  Copyright terms: Public domain W3C validator