Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a2i | GIF version |
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: imim2i 12 mpd 13 sylcom 28 pm2.43 53 ancl 316 ancr 319 anc2r 326 pm2.65 654 pm2.18dc 850 con4biddc 852 hbim1 1563 sbcof2 1803 ralimia 2531 ceqsalg 2758 rspct 2827 elabgt 2871 fvmptt 5587 ordiso2 7012 bj-exlimmp 13804 bj-rspgt 13821 bj-indint 13966 |
Copyright terms: Public domain | W3C validator |