ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a2i GIF version

Theorem a2i 11
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a2i.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
a2i ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem a2i
StepHypRef Expression
1 a2i.1 . 2 (𝜑 → (𝜓𝜒))
2 ax-2 7 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
31, 2ax-mp 5 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-2 7
This theorem is referenced by:  imim2i  12  mpd  13  sylcom  28  pm2.43  53  ancl  318  ancr  321  anc2r  328  pm2.65  663  pm2.18dc  860  con4biddc  862  hbim1  1616  sbcof2  1856  ralimia  2591  ceqsalg  2828  rspct  2900  elabgt  2944  fvmptt  5719  ordiso2  7190  bj-exlimmp  16063  bj-rspgt  16080  bj-indint  16224
  Copyright terms: Public domain W3C validator