Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a2i | GIF version |
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: imim2i 12 mpd 13 sylcom 28 pm2.43 53 ancl 316 ancr 319 anc2r 326 pm2.65 649 pm2.18dc 845 con4biddc 847 hbim1 1558 sbcof2 1798 ralimia 2527 ceqsalg 2754 rspct 2823 elabgt 2867 fvmptt 5577 ordiso2 7000 bj-exlimmp 13650 bj-rspgt 13667 bj-indint 13813 |
Copyright terms: Public domain | W3C validator |