| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a2i | GIF version | ||
| Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: imim2i 12 mpd 13 sylcom 28 pm2.43 53 ancl 318 ancr 321 anc2r 328 pm2.65 663 pm2.18dc 860 con4biddc 862 hbim1 1616 sbcof2 1856 ralimia 2591 ceqsalg 2828 rspct 2900 elabgt 2944 fvmptt 5719 ordiso2 7190 bj-exlimmp 16063 bj-rspgt 16080 bj-indint 16224 |
| Copyright terms: Public domain | W3C validator |