![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > a2i | GIF version |
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: imim2i 12 mpd 13 sylcom 28 pm2.43 53 ancl 318 ancr 321 anc2r 328 pm2.65 659 pm2.18dc 855 con4biddc 857 hbim1 1570 sbcof2 1810 ralimia 2538 ceqsalg 2766 rspct 2835 elabgt 2879 fvmptt 5608 ordiso2 7034 bj-exlimmp 14524 bj-rspgt 14541 bj-indint 14686 |
Copyright terms: Public domain | W3C validator |