| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.29af2 | GIF version | ||
| Description: A commonly used pattern based on r19.29 2634. (Contributed by Thierry Arnoux, 17-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| r19.29af2.p | ⊢ Ⅎ𝑥𝜑 | 
| r19.29af2.c | ⊢ Ⅎ𝑥𝜒 | 
| r19.29af2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | 
| r19.29af2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
| Ref | Expression | 
|---|---|
| r19.29af2 | ⊢ (𝜑 → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29af2.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | r19.29af2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | r19.29af2.1 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | 3 | exp31 364 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | 
| 5 | 2, 4 | ralrimi 2568 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | 
| 6 | 1, 5 | jca 306 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒))) | 
| 7 | r19.29r 2635 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | |
| 8 | r19.29af2.c | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 9 | pm3.35 347 | . . . 4 ⊢ ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | |
| 10 | 9 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒)) | 
| 11 | 8, 10 | rexlimi 2607 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | 
| 12 | 6, 7, 11 | 3syl 17 | 1 ⊢ (𝜑 → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: r19.29af 2638 ctiunctlemfo 12656 | 
| Copyright terms: Public domain | W3C validator |