Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.29af2 | GIF version |
Description: A commonly used pattern based on r19.29 2594 (Contributed by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
r19.29af2.p | ⊢ Ⅎ𝑥𝜑 |
r19.29af2.c | ⊢ Ⅎ𝑥𝜒 |
r19.29af2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af2.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | r19.29af2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | r19.29af2.1 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | 3 | exp31 362 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
5 | 2, 4 | ralrimi 2528 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
6 | 1, 5 | jca 304 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒))) |
7 | r19.29r 2595 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | |
8 | r19.29af2.c | . . 3 ⊢ Ⅎ𝑥𝜒 | |
9 | pm3.35 345 | . . . 4 ⊢ ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | |
10 | 9 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒)) |
11 | 8, 10 | rexlimi 2567 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) |
12 | 6, 7, 11 | 3syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 Ⅎwnf 1440 ∈ wcel 2128 ∀wral 2435 ∃wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-ral 2440 df-rex 2441 |
This theorem is referenced by: r19.29af 2598 ctiunctlemfo 12140 |
Copyright terms: Public domain | W3C validator |