ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax9o GIF version

Theorem ax9o 1678
Description: An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
ax9o (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem ax9o
StepHypRef Expression
1 a9e 1676 . 2 𝑥 𝑥 = 𝑦
2 19.29r 1601 . . 3 ((∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑)) → ∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)))
3 hba1 1520 . . . . 5 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
4 pm3.35 345 . . . . 5 ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)) → ∀𝑥𝜑)
53, 4exlimih 1573 . . . 4 (∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)) → ∀𝑥𝜑)
6 ax-4 1490 . . . 4 (∀𝑥𝜑𝜑)
75, 6syl 14 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)) → 𝜑)
82, 7syl 14 . 2 ((∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑)) → 𝜑)
91, 8mpan 421 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1333   = wceq 1335  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equsalh  1706  spimth  1715  spimh  1717
  Copyright terms: Public domain W3C validator