| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax9o | GIF version | ||
| Description: An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| ax9o | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a9e 1710 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | 19.29r 1635 | . . 3 ⊢ ((∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑)) → ∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑))) | |
| 3 | hba1 1554 | . . . . 5 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 4 | pm3.35 347 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)) → ∀𝑥𝜑) | |
| 5 | 3, 4 | exlimih 1607 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)) → ∀𝑥𝜑) | 
| 6 | ax-4 1524 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → ∀𝑥𝜑)) → 𝜑) | 
| 8 | 2, 7 | syl 14 | . 2 ⊢ ((∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑)) → 𝜑) | 
| 9 | 1, 8 | mpan 424 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: equsalh 1740 spimth 1749 spimh 1751 | 
| Copyright terms: Public domain | W3C validator |