| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2203 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = 𝐴 ↔ 𝑥 = 𝐴)) |
| 2 | 1 | anbi2d 464 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝜑 ∧ 𝑧 = 𝐴) ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
| 3 | 2 | exbidv 1839 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ↔ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴))) |
| 4 | 3 | cbvabv 2321 |
. . . . . . 7
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} = {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} |
| 5 | | intab.2 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} ∈ V |
| 6 | 4, 5 | eqeltri 2269 |
. . . . . 6
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ V |
| 7 | | nfe1 1510 |
. . . . . . . . 9
⊢
Ⅎ𝑦∃𝑦(𝜑 ∧ 𝑧 = 𝐴) |
| 8 | 7 | nfab 2344 |
. . . . . . . 8
⊢
Ⅎ𝑦{𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
| 9 | 8 | nfeq2 2351 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
| 10 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)})) |
| 11 | 10 | imbi2d 230 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} → ((𝜑 → 𝐴 ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}))) |
| 12 | 9, 11 | albid 1629 |
. . . . . 6
⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} → (∀𝑦(𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑦(𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}))) |
| 13 | 6, 12 | elab 2908 |
. . . . 5
⊢ ({𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ↔ ∀𝑦(𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)})) |
| 14 | | 19.8a 1604 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 = 𝐴) → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)) |
| 15 | 14 | ex 115 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 = 𝐴 → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴))) |
| 16 | 15 | alrimiv 1888 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴))) |
| 17 | | intab.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
| 18 | 17 | sbc6 3015 |
. . . . . . 7
⊢
([𝐴 / 𝑧]∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ↔ ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴))) |
| 19 | 16, 18 | sylibr 134 |
. . . . . 6
⊢ (𝜑 → [𝐴 / 𝑧]∃𝑦(𝜑 ∧ 𝑧 = 𝐴)) |
| 20 | | df-sbc 2990 |
. . . . . 6
⊢
([𝐴 / 𝑧]∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ↔ 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}) |
| 21 | 19, 20 | sylib 122 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}) |
| 22 | 13, 21 | mpgbir 1467 |
. . . 4
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} |
| 23 | | intss1 3889 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} → ∩ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}) |
| 24 | 22, 23 | ax-mp 5 |
. . 3
⊢ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
| 25 | | 19.29r 1635 |
. . . . . . . 8
⊢
((∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ∧ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)) → ∃𝑦((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥))) |
| 26 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 = 𝐴) |
| 27 | | pm3.35 347 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝐴 ∈ 𝑥) |
| 28 | 27 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝐴 ∈ 𝑥) |
| 29 | 26, 28 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 ∈ 𝑥) |
| 30 | 29 | exlimiv 1612 |
. . . . . . . 8
⊢
(∃𝑦((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 ∈ 𝑥) |
| 31 | 25, 30 | syl 14 |
. . . . . . 7
⊢
((∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ∧ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 ∈ 𝑥) |
| 32 | 31 | ex 115 |
. . . . . 6
⊢
(∃𝑦(𝜑 ∧ 𝑧 = 𝐴) → (∀𝑦(𝜑 → 𝐴 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
| 33 | 32 | alrimiv 1888 |
. . . . 5
⊢
(∃𝑦(𝜑 ∧ 𝑧 = 𝐴) → ∀𝑥(∀𝑦(𝜑 → 𝐴 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
| 34 | | vex 2766 |
. . . . . 6
⊢ 𝑧 ∈ V |
| 35 | 34 | elintab 3885 |
. . . . 5
⊢ (𝑧 ∈ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ↔ ∀𝑥(∀𝑦(𝜑 → 𝐴 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
| 36 | 33, 35 | sylibr 134 |
. . . 4
⊢
(∃𝑦(𝜑 ∧ 𝑧 = 𝐴) → 𝑧 ∈ ∩ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)}) |
| 37 | 36 | abssi 3258 |
. . 3
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ⊆ ∩
{𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} |
| 38 | 24, 37 | eqssi 3199 |
. 2
⊢ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
| 39 | 38, 4 | eqtri 2217 |
1
⊢ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} = {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} |