Step | Hyp | Ref
| Expression |
1 | | eqeq1 2172 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = 𝐴 ↔ 𝑥 = 𝐴)) |
2 | 1 | anbi2d 460 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝜑 ∧ 𝑧 = 𝐴) ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
3 | 2 | exbidv 1813 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ↔ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴))) |
4 | 3 | cbvabv 2291 |
. . . . . . 7
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} = {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} |
5 | | intab.2 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} ∈ V |
6 | 4, 5 | eqeltri 2239 |
. . . . . 6
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ V |
7 | | nfe1 1484 |
. . . . . . . . 9
⊢
Ⅎ𝑦∃𝑦(𝜑 ∧ 𝑧 = 𝐴) |
8 | 7 | nfab 2313 |
. . . . . . . 8
⊢
Ⅎ𝑦{𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
9 | 8 | nfeq2 2320 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
10 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)})) |
11 | 10 | imbi2d 229 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} → ((𝜑 → 𝐴 ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}))) |
12 | 9, 11 | albid 1603 |
. . . . . 6
⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} → (∀𝑦(𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑦(𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}))) |
13 | 6, 12 | elab 2870 |
. . . . 5
⊢ ({𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ↔ ∀𝑦(𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)})) |
14 | | 19.8a 1578 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 = 𝐴) → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)) |
15 | 14 | ex 114 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 = 𝐴 → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴))) |
16 | 15 | alrimiv 1862 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴))) |
17 | | intab.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
18 | 17 | sbc6 2976 |
. . . . . . 7
⊢
([𝐴 / 𝑧]∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ↔ ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑 ∧ 𝑧 = 𝐴))) |
19 | 16, 18 | sylibr 133 |
. . . . . 6
⊢ (𝜑 → [𝐴 / 𝑧]∃𝑦(𝜑 ∧ 𝑧 = 𝐴)) |
20 | | df-sbc 2952 |
. . . . . 6
⊢
([𝐴 / 𝑧]∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ↔ 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}) |
21 | 19, 20 | sylib 121 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}) |
22 | 13, 21 | mpgbir 1441 |
. . . 4
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} |
23 | | intss1 3839 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} → ∩ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)}) |
24 | 22, 23 | ax-mp 5 |
. . 3
⊢ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
25 | | 19.29r 1609 |
. . . . . . . 8
⊢
((∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ∧ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)) → ∃𝑦((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥))) |
26 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 = 𝐴) |
27 | | pm3.35 345 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝐴 ∈ 𝑥) |
28 | 27 | adantlr 469 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝐴 ∈ 𝑥) |
29 | 26, 28 | eqeltrd 2243 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 ∈ 𝑥) |
30 | 29 | exlimiv 1586 |
. . . . . . . 8
⊢
(∃𝑦((𝜑 ∧ 𝑧 = 𝐴) ∧ (𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 ∈ 𝑥) |
31 | 25, 30 | syl 14 |
. . . . . . 7
⊢
((∃𝑦(𝜑 ∧ 𝑧 = 𝐴) ∧ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)) → 𝑧 ∈ 𝑥) |
32 | 31 | ex 114 |
. . . . . 6
⊢
(∃𝑦(𝜑 ∧ 𝑧 = 𝐴) → (∀𝑦(𝜑 → 𝐴 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
33 | 32 | alrimiv 1862 |
. . . . 5
⊢
(∃𝑦(𝜑 ∧ 𝑧 = 𝐴) → ∀𝑥(∀𝑦(𝜑 → 𝐴 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
34 | | vex 2729 |
. . . . . 6
⊢ 𝑧 ∈ V |
35 | 34 | elintab 3835 |
. . . . 5
⊢ (𝑧 ∈ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} ↔ ∀𝑥(∀𝑦(𝜑 → 𝐴 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
36 | 33, 35 | sylibr 133 |
. . . 4
⊢
(∃𝑦(𝜑 ∧ 𝑧 = 𝐴) → 𝑧 ∈ ∩ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)}) |
37 | 36 | abssi 3217 |
. . 3
⊢ {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} ⊆ ∩
{𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} |
38 | 24, 37 | eqssi 3158 |
. 2
⊢ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} = {𝑧 ∣ ∃𝑦(𝜑 ∧ 𝑧 = 𝐴)} |
39 | 38, 4 | eqtri 2186 |
1
⊢ ∩ {𝑥
∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} = {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} |