Proof of Theorem pm4.79dc
| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. . . 4
⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) |
| 2 | | id 19 |
. . . 4
⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜑)) |
| 3 | 1, 2 | jaoa 721 |
. . 3
⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) → ((𝜓 ∧ 𝜒) → 𝜑)) |
| 4 | | simplimdc 861 |
. . . . . 6
⊢
(DECID 𝜓 → (¬ (𝜓 → 𝜑) → 𝜓)) |
| 5 | | pm3.3 261 |
. . . . . 6
⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (𝜓 → (𝜒 → 𝜑))) |
| 6 | 4, 5 | syl9 72 |
. . . . 5
⊢
(DECID 𝜓 → (((𝜓 ∧ 𝜒) → 𝜑) → (¬ (𝜓 → 𝜑) → (𝜒 → 𝜑)))) |
| 7 | | dcim 842 |
. . . . . 6
⊢
(DECID 𝜓 → (DECID 𝜑 → DECID
(𝜓 → 𝜑))) |
| 8 | | pm2.54dc 892 |
. . . . . 6
⊢
(DECID (𝜓 → 𝜑) → ((¬ (𝜓 → 𝜑) → (𝜒 → 𝜑)) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)))) |
| 9 | 7, 8 | syl6 33 |
. . . . 5
⊢
(DECID 𝜓 → (DECID 𝜑 → ((¬ (𝜓 → 𝜑) → (𝜒 → 𝜑)) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑))))) |
| 10 | 6, 9 | syl5d 68 |
. . . 4
⊢
(DECID 𝜓 → (DECID 𝜑 → (((𝜓 ∧ 𝜒) → 𝜑) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑))))) |
| 11 | 10 | imp 124 |
. . 3
⊢
((DECID 𝜓 ∧ DECID 𝜑) → (((𝜓 ∧ 𝜒) → 𝜑) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)))) |
| 12 | 3, 11 | impbid2 143 |
. 2
⊢
((DECID 𝜓 ∧ DECID 𝜑) → (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑))) |
| 13 | 12 | expcom 116 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)))) |