Proof of Theorem pm4.79dc
Step | Hyp | Ref
| Expression |
1 | | id 19 |
. . . 4
⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) |
2 | | id 19 |
. . . 4
⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜑)) |
3 | 1, 2 | jaoa 715 |
. . 3
⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) → ((𝜓 ∧ 𝜒) → 𝜑)) |
4 | | simplimdc 855 |
. . . . . 6
⊢
(DECID 𝜓 → (¬ (𝜓 → 𝜑) → 𝜓)) |
5 | | pm3.3 259 |
. . . . . 6
⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (𝜓 → (𝜒 → 𝜑))) |
6 | 4, 5 | syl9 72 |
. . . . 5
⊢
(DECID 𝜓 → (((𝜓 ∧ 𝜒) → 𝜑) → (¬ (𝜓 → 𝜑) → (𝜒 → 𝜑)))) |
7 | | dcim 836 |
. . . . . 6
⊢
(DECID 𝜓 → (DECID 𝜑 → DECID
(𝜓 → 𝜑))) |
8 | | pm2.54dc 886 |
. . . . . 6
⊢
(DECID (𝜓 → 𝜑) → ((¬ (𝜓 → 𝜑) → (𝜒 → 𝜑)) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)))) |
9 | 7, 8 | syl6 33 |
. . . . 5
⊢
(DECID 𝜓 → (DECID 𝜑 → ((¬ (𝜓 → 𝜑) → (𝜒 → 𝜑)) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑))))) |
10 | 6, 9 | syl5d 68 |
. . . 4
⊢
(DECID 𝜓 → (DECID 𝜑 → (((𝜓 ∧ 𝜒) → 𝜑) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑))))) |
11 | 10 | imp 123 |
. . 3
⊢
((DECID 𝜓 ∧ DECID 𝜑) → (((𝜓 ∧ 𝜒) → 𝜑) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)))) |
12 | 3, 11 | impbid2 142 |
. 2
⊢
((DECID 𝜓 ∧ DECID 𝜑) → (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑))) |
13 | 12 | expcom 115 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)))) |