ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.55dc GIF version

Theorem pm4.55dc 940
Description: Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.55dc (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑𝜓) ↔ (𝜑 ∨ ¬ 𝜓))))

Proof of Theorem pm4.55dc
StepHypRef Expression
1 pm4.54dc 903 . . . . 5 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))
21imp 124 . . . 4 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))
3 dcor 937 . . . . . 6 (DECID 𝜑 → (DECID ¬ 𝜓DECID (𝜑 ∨ ¬ 𝜓)))
4 dcn 843 . . . . . 6 (DECID 𝜓DECID ¬ 𝜓)
53, 4impel 280 . . . . 5 ((DECID 𝜑DECID 𝜓) → DECID (𝜑 ∨ ¬ 𝜓))
6 dcn 843 . . . . . 6 (DECID 𝜑DECID ¬ 𝜑)
7 dcan 935 . . . . . 6 ((DECID ¬ 𝜑DECID 𝜓) → DECID𝜑𝜓))
86, 7sylan 283 . . . . 5 ((DECID 𝜑DECID 𝜓) → DECID𝜑𝜓))
9 con2bidc 876 . . . . 5 (DECID (𝜑 ∨ ¬ 𝜓) → (DECID𝜑𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑𝜓)) ↔ ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))))
105, 8, 9sylc 62 . . . 4 ((DECID 𝜑DECID 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑𝜓)) ↔ ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))
112, 10mpbird 167 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑𝜓)))
1211, 11, 113bitr2rd 217 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (¬ 𝜑𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
1312ex 115 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑𝜓) ↔ (𝜑 ∨ ¬ 𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator