Proof of Theorem pm4.55dc
Step | Hyp | Ref
| Expression |
1 | | pm4.54dc 888 |
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
2 | 1 | imp 123 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))) |
3 | | dcn 828 |
. . . . . . . . 9
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
4 | 3 | anim2i 340 |
. . . . . . . 8
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (DECID 𝜑 ∧ DECID ¬
𝜓)) |
5 | | dcor 920 |
. . . . . . . . 9
⊢
(DECID 𝜑 → (DECID ¬ 𝜓 → DECID
(𝜑 ∨ ¬ 𝜓))) |
6 | 5 | imp 123 |
. . . . . . . 8
⊢
((DECID 𝜑 ∧ DECID ¬ 𝜓) → DECID
(𝜑 ∨ ¬ 𝜓)) |
7 | 4, 6 | syl 14 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∨ ¬ 𝜓)) |
8 | | dcn 828 |
. . . . . . . . 9
⊢
(DECID 𝜑 → DECID ¬ 𝜑) |
9 | | dcan 919 |
. . . . . . . . 9
⊢
(DECID ¬ 𝜑 → (DECID 𝜓 → DECID
(¬ 𝜑 ∧ 𝜓))) |
10 | 8, 9 | syl 14 |
. . . . . . . 8
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(¬ 𝜑 ∧ 𝜓))) |
11 | 10 | imp 123 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ 𝜓)) |
12 | 7, 11 | jca 304 |
. . . . . 6
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (DECID (𝜑 ∨ ¬ 𝜓) ∧ DECID (¬ 𝜑 ∧ 𝜓))) |
13 | | con2bidc 861 |
. . . . . . 7
⊢
(DECID (𝜑 ∨ ¬ 𝜓) → (DECID (¬ 𝜑 ∧ 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))) |
14 | 13 | imp 123 |
. . . . . 6
⊢
((DECID (𝜑 ∨ ¬ 𝜓) ∧ DECID (¬ 𝜑 ∧ 𝜓)) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
15 | 12, 14 | syl 14 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
16 | 15 | biimprd 157 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)))) |
17 | 2, 16 | mpd 13 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓))) |
18 | 17 | bicomd 140 |
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) |
19 | 18 | ex 114 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))) |