Proof of Theorem pm4.55dc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | pm4.54dc 903 | 
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) | 
| 2 | 1 | imp 124 | 
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))) | 
| 3 |   | dcor 937 | 
. . . . . 6
⊢
(DECID 𝜑 → (DECID ¬ 𝜓 → DECID
(𝜑 ∨ ¬ 𝜓))) | 
| 4 |   | dcn 843 | 
. . . . . 6
⊢
(DECID 𝜓 → DECID ¬ 𝜓) | 
| 5 | 3, 4 | impel 280 | 
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∨ ¬ 𝜓)) | 
| 6 |   | dcn 843 | 
. . . . . 6
⊢
(DECID 𝜑 → DECID ¬ 𝜑) | 
| 7 |   | dcan 935 | 
. . . . . 6
⊢
((DECID ¬ 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ 𝜓)) | 
| 8 | 6, 7 | sylan 283 | 
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ 𝜓)) | 
| 9 |   | con2bidc 876 | 
. . . . 5
⊢
(DECID (𝜑 ∨ ¬ 𝜓) → (DECID (¬ 𝜑 ∧ 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))) | 
| 10 | 5, 8, 9 | sylc 62 | 
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) | 
| 11 | 2, 10 | mpbird 167 | 
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓))) | 
| 12 | 11, 11, 11 | 3bitr2rd 217 | 
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) | 
| 13 | 12 | ex 115 | 
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))) |