Proof of Theorem pm4.55dc
Step | Hyp | Ref
| Expression |
1 | | pm4.54dc 903 |
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
2 | 1 | imp 124 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))) |
3 | | dcor 937 |
. . . . . 6
⊢
(DECID 𝜑 → (DECID ¬ 𝜓 → DECID
(𝜑 ∨ ¬ 𝜓))) |
4 | | dcn 843 |
. . . . . 6
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
5 | 3, 4 | impel 280 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∨ ¬ 𝜓)) |
6 | | dcn 843 |
. . . . . 6
⊢
(DECID 𝜑 → DECID ¬ 𝜑) |
7 | | dcan 935 |
. . . . . 6
⊢
((DECID ¬ 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ 𝜓)) |
8 | 6, 7 | sylan 283 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ 𝜓)) |
9 | | con2bidc 876 |
. . . . 5
⊢
(DECID (𝜑 ∨ ¬ 𝜓) → (DECID (¬ 𝜑 ∧ 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))) |
10 | 5, 8, 9 | sylc 62 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
11 | 2, 10 | mpbird 167 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓))) |
12 | 11, 11, 11 | 3bitr2rd 217 |
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) |
13 | 12 | ex 115 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))) |