ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnemnf GIF version

Theorem xrnemnf 9919
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnemnf ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))

Proof of Theorem xrnemnf
StepHypRef Expression
1 pm5.61 796 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
2 elxr 9918 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 982 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
42, 3bitri 184 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
5 df-ne 2378 . . 3 (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞)
64, 5anbi12i 460 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞))
7 renemnf 8141 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
8 pnfnemnf 8147 . . . . . 6 +∞ ≠ -∞
9 neeq1 2390 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 168 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
117, 10jaoi 718 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞)
1211neneqd 2398 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞)
1312pm4.71i 391 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
141, 6, 133bitr4i 212 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 710  w3o 980   = wceq 1373  wcel 2177  wne 2377  cr 7944  +∞cpnf 8124  -∞cmnf 8125  *cxr 8126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-pnf 8129  df-mnf 8130  df-xr 8131
This theorem is referenced by:  xaddf  9986  xaddval  9987  xaddnemnf  9999  xaddass  10011  xlesubadd  10025  xblss2ps  14951  xblss2  14952
  Copyright terms: Public domain W3C validator