ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnemnf GIF version

Theorem xrnemnf 9457
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnemnf ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))

Proof of Theorem xrnemnf
StepHypRef Expression
1 pm5.61 766 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
2 elxr 9456 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 946 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
42, 3bitri 183 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
5 df-ne 2283 . . 3 (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞)
64, 5anbi12i 453 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞))
7 renemnf 7738 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
8 pnfnemnf 7744 . . . . . 6 +∞ ≠ -∞
9 neeq1 2295 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 167 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
117, 10jaoi 688 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞)
1211neneqd 2303 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞)
1312pm4.71i 386 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
141, 6, 133bitr4i 211 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 680  w3o 944   = wceq 1314  wcel 1463  wne 2282  cr 7546  +∞cpnf 7721  -∞cmnf 7722  *cxr 7723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-uni 3703  df-pnf 7726  df-mnf 7727  df-xr 7728
This theorem is referenced by:  xaddf  9520  xaddval  9521  xaddnemnf  9533  xaddass  9545  xlesubadd  9559  xblss2ps  12393  xblss2  12394
  Copyright terms: Public domain W3C validator