Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrnemnf | GIF version |
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 784 | . 2 ⊢ ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞)) | |
2 | elxr 9712 | . . . 4 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
3 | df-3or 969 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) | |
4 | 2, 3 | bitri 183 | . . 3 ⊢ (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) |
5 | df-ne 2337 | . . 3 ⊢ (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞) | |
6 | 4, 5 | anbi12i 456 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞)) |
7 | renemnf 7947 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
8 | pnfnemnf 7953 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
9 | neeq1 2349 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
10 | 8, 9 | mpbiri 167 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
11 | 7, 10 | jaoi 706 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
12 | 11 | neneqd 2357 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞) |
13 | 12 | pm4.71i 389 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞)) |
14 | 1, 6, 13 | 3bitr4i 211 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 df-xr 7937 |
This theorem is referenced by: xaddf 9780 xaddval 9781 xaddnemnf 9793 xaddass 9805 xlesubadd 9819 xblss2ps 13044 xblss2 13045 |
Copyright terms: Public domain | W3C validator |