| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrnemnf | GIF version | ||
| Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrnemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.61 799 | . 2 ⊢ ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞)) | |
| 2 | elxr 9968 | . . . 4 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 3 | df-3or 1003 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) | |
| 4 | 2, 3 | bitri 184 | . . 3 ⊢ (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) |
| 5 | df-ne 2401 | . . 3 ⊢ (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞) | |
| 6 | 4, 5 | anbi12i 460 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞)) |
| 7 | renemnf 8191 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 8 | pnfnemnf 8197 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 9 | neeq1 2413 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
| 10 | 8, 9 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
| 11 | 7, 10 | jaoi 721 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
| 12 | 11 | neneqd 2421 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞) |
| 13 | 12 | pm4.71i 391 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞)) |
| 14 | 1, 6, 13 | 3bitr4i 212 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ℝcr 7994 +∞cpnf 8174 -∞cmnf 8175 ℝ*cxr 8176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 df-xr 8181 |
| This theorem is referenced by: xaddf 10036 xaddval 10037 xaddnemnf 10049 xaddass 10061 xlesubadd 10075 xblss2ps 15072 xblss2 15073 |
| Copyright terms: Public domain | W3C validator |