ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32ri GIF version

Theorem pm5.32ri 455
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.)
Hypothesis
Ref Expression
pm5.32i.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
pm5.32ri ((𝜓𝜑) ↔ (𝜒𝜑))

Proof of Theorem pm5.32ri
StepHypRef Expression
1 pm5.32i.1 . . 3 (𝜑 → (𝜓𝜒))
21pm5.32i 454 . 2 ((𝜑𝜓) ↔ (𝜑𝜒))
3 ancom 266 . 2 ((𝜓𝜑) ↔ (𝜑𝜓))
4 ancom 266 . 2 ((𝜒𝜑) ↔ (𝜑𝜒))
52, 3, 43bitr4i 212 1 ((𝜓𝜑) ↔ (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anbi1i  458  pm5.36  612  pm5.61  799  oranabs  820  ceqsralt  2827  ceqsrexbv  2934  reuind  3008  rabsn  3733  dfoprab2  6042  xpsnen  6968  nn1suc  9117  isprm2  12625  ismnd  13438  dfgrp2e  13547  isxms2  15111
  Copyright terms: Public domain W3C validator