| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.32ri | GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 454 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) | 
| 3 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 266 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: anbi1i 458 pm5.36 610 pm5.61 795 oranabs 816 ceqsralt 2790 ceqsrexbv 2895 reuind 2969 rabsn 3689 dfoprab2 5969 xpsnen 6880 nn1suc 9009 isprm2 12285 ismnd 13060 dfgrp2e 13160 isxms2 14688 | 
| Copyright terms: Public domain | W3C validator |