ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32ri GIF version

Theorem pm5.32ri 451
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.)
Hypothesis
Ref Expression
pm5.32i.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
pm5.32ri ((𝜓𝜑) ↔ (𝜒𝜑))

Proof of Theorem pm5.32ri
StepHypRef Expression
1 pm5.32i.1 . . 3 (𝜑 → (𝜓𝜒))
21pm5.32i 450 . 2 ((𝜑𝜓) ↔ (𝜑𝜒))
3 ancom 264 . 2 ((𝜓𝜑) ↔ (𝜑𝜓))
4 ancom 264 . 2 ((𝜒𝜑) ↔ (𝜑𝜒))
52, 3, 43bitr4i 211 1 ((𝜓𝜑) ↔ (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anbi1i  454  pm5.36  600  pm5.61  784  oranabs  805  ceqsralt  2753  ceqsrexbv  2857  reuind  2931  rabsn  3643  dfoprab2  5889  xpsnen  6787  nn1suc  8876  isprm2  12049  isxms2  13092
  Copyright terms: Public domain W3C validator