ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32ri GIF version

Theorem pm5.32ri 452
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.)
Hypothesis
Ref Expression
pm5.32i.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
pm5.32ri ((𝜓𝜑) ↔ (𝜒𝜑))

Proof of Theorem pm5.32ri
StepHypRef Expression
1 pm5.32i.1 . . 3 (𝜑 → (𝜓𝜒))
21pm5.32i 451 . 2 ((𝜑𝜓) ↔ (𝜑𝜒))
3 ancom 264 . 2 ((𝜓𝜑) ↔ (𝜑𝜓))
4 ancom 264 . 2 ((𝜒𝜑) ↔ (𝜑𝜒))
52, 3, 43bitr4i 211 1 ((𝜓𝜑) ↔ (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anbi1i  455  pm5.36  605  pm5.61  789  oranabs  810  ceqsralt  2757  ceqsrexbv  2861  reuind  2935  rabsn  3650  dfoprab2  5900  xpsnen  6799  nn1suc  8897  isprm2  12071  ismnd  12655  dfgrp2e  12733  isxms2  13246
  Copyright terms: Public domain W3C validator