ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnepnf GIF version

Theorem xrnepnf 9899
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnepnf ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))

Proof of Theorem xrnepnf
StepHypRef Expression
1 pm5.61 795 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞))
2 elxr 9897 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 981 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
4 or32 771 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞))
52, 3, 43bitri 206 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞))
6 df-ne 2376 . . 3 (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞)
75, 6anbi12i 460 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞))
8 renepnf 8119 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
9 mnfnepnf 8127 . . . . . 6 -∞ ≠ +∞
10 neeq1 2388 . . . . . 6 (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞))
119, 10mpbiri 168 . . . . 5 (𝐴 = -∞ → 𝐴 ≠ +∞)
128, 11jaoi 717 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → 𝐴 ≠ +∞)
1312neneqd 2396 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → ¬ 𝐴 = +∞)
1413pm4.71i 391 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞))
151, 7, 143bitr4i 212 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709  w3o 979   = wceq 1372  wcel 2175  wne 2375  cr 7923  +∞cpnf 8103  -∞cmnf 8104  *cxr 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-un 4479  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-pnf 8108  df-mnf 8109  df-xr 8110
This theorem is referenced by:  xaddnepnf  9979
  Copyright terms: Public domain W3C validator