Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.74i | GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 178 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bitrd 187 imbi2i 225 bibi2d 231 ibib 244 ibibr 245 anclb 317 pm5.42 318 ancrb 320 equsalh 1719 equsal 1720 equsalv 1786 sb6a 1981 ralbiia 2484 dfdif3 3237 raaan 3521 exmid01 4184 isprm4 12073 |
Copyright terms: Public domain | W3C validator |