| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2d | GIF version | ||
| Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbco2d.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| sbco2d.2 | ⊢ (𝜑 → ∀𝑧𝜑) |
| sbco2d.3 | ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) |
| Ref | Expression |
|---|---|
| sbco2d | ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2d.2 | . . . . 5 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 2 | sbco2d.3 | . . . . 5 ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) | |
| 3 | 1, 2 | hbim1 1594 | . . . 4 ⊢ ((𝜑 → 𝜓) → ∀𝑧(𝜑 → 𝜓)) |
| 4 | 3 | sbco2h 1993 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) |
| 5 | sbco2d.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 6 | 5 | sbrim 1985 | . . . . 5 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑧 / 𝑥]𝜓)) |
| 7 | 6 | sbbii 1789 | . . . 4 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓)) |
| 8 | 1 | sbrim 1985 | . . . 4 ⊢ ([𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
| 9 | 7, 8 | bitri 184 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
| 10 | 5 | sbrim 1985 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
| 11 | 4, 9, 10 | 3bitr3i 210 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
| 12 | 11 | pm5.74ri 181 | 1 ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |