![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbco2vd | GIF version |
Description: Version of sbco2d 1966 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
sbco2vd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
sbco2vd.2 | ⊢ (𝜑 → ∀𝑧𝜑) |
sbco2vd.3 | ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) |
Ref | Expression |
---|---|
sbco2vd | ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2vd.2 | . . . . 5 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | sbco2vd.3 | . . . . 5 ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) | |
3 | 1, 2 | hbim1 1570 | . . . 4 ⊢ ((𝜑 → 𝜓) → ∀𝑧(𝜑 → 𝜓)) |
4 | 3 | sbco2vh 1945 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) |
5 | sbco2vd.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑥𝜑) | |
6 | 5 | sbrim 1956 | . . . . 5 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑧 / 𝑥]𝜓)) |
7 | 6 | sbbii 1765 | . . . 4 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓)) |
8 | 1 | sbrim 1956 | . . . 4 ⊢ ([𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
9 | 7, 8 | bitri 184 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
10 | 5 | sbrim 1956 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
11 | 4, 9, 10 | 3bitr3i 210 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
12 | 11 | pm5.74ri 181 | 1 ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |