| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbval2 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| cbval2.1 | ⊢ Ⅎ𝑧𝜑 | 
| cbval2.2 | ⊢ Ⅎ𝑤𝜑 | 
| cbval2.3 | ⊢ Ⅎ𝑥𝜓 | 
| cbval2.4 | ⊢ Ⅎ𝑦𝜓 | 
| cbval2.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbval2 | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbval2.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfal 1590 | . 2 ⊢ Ⅎ𝑧∀𝑦𝜑 | 
| 3 | cbval2.3 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfal 1590 | . 2 ⊢ Ⅎ𝑥∀𝑤𝜓 | 
| 5 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑤 𝑥 = 𝑧 | |
| 6 | cbval2.2 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
| 7 | 5, 6 | nfim 1586 | . . . . 5 ⊢ Ⅎ𝑤(𝑥 = 𝑧 → 𝜑) | 
| 8 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 = 𝑧 | |
| 9 | cbval2.4 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
| 10 | 8, 9 | nfim 1586 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 = 𝑧 → 𝜓) | 
| 11 | cbval2.5 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | expcom 116 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝑥 = 𝑧 → (𝜑 ↔ 𝜓))) | 
| 13 | 12 | pm5.74d 182 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜓))) | 
| 14 | 7, 10, 13 | cbval 1768 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑤(𝑥 = 𝑧 → 𝜓)) | 
| 15 | 19.21v 1887 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦𝜑)) | |
| 16 | 19.21v 1887 | . . . 4 ⊢ (∀𝑤(𝑥 = 𝑧 → 𝜓) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓)) | |
| 17 | 14, 15, 16 | 3bitr3i 210 | . . 3 ⊢ ((𝑥 = 𝑧 → ∀𝑦𝜑) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓)) | 
| 18 | 17 | pm5.74ri 181 | . 2 ⊢ (𝑥 = 𝑧 → (∀𝑦𝜑 ↔ ∀𝑤𝜓)) | 
| 19 | 2, 4, 18 | cbval 1768 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: cbval2v 1938 | 
| Copyright terms: Public domain | W3C validator |