| Step | Hyp | Ref
 | Expression | 
| 1 |   | 1nprm 12282 | 
. . . . 5
⊢  ¬ 1
∈ ℙ | 
| 2 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈
ℙ)) | 
| 3 | 2 | biimpcd 159 | 
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 = 1 → 1 ∈
ℙ)) | 
| 4 | 1, 3 | mtoi 665 | 
. . . 4
⊢ (𝑃 ∈ ℙ → ¬
𝑃 = 1) | 
| 5 | 4 | neqned 2374 | 
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ≠ 1) | 
| 6 | 5 | pm4.71i 391 | 
. 2
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 1)) | 
| 7 |   | isprm 12277 | 
. . . 4
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) | 
| 8 |   | isprm2lem 12284 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) | 
| 9 |   | eqss 3198 | 
. . . . . . . . . . 11
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} ↔ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃})) | 
| 10 | 9 | imbi2i 226 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}))) | 
| 11 |   | 1idssfct 12283 | 
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) | 
| 12 |   | jcab 603 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃})) ↔ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}))) | 
| 13 | 11, 12 | mpbiran2 943 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃})) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 14 | 10, 13 | bitri 184 | 
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 15 | 14 | pm5.74ri 181 | 
. . . . . . . 8
⊢ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 16 | 15 | adantr 276 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 17 | 8, 16 | bitrd 188 | 
. . . . . 6
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 18 | 17 | expcom 116 | 
. . . . 5
⊢ (𝑃 ≠ 1 → (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) | 
| 19 | 18 | pm5.32d 450 | 
. . . 4
⊢ (𝑃 ≠ 1 → ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) | 
| 20 | 7, 19 | bitrid 192 | 
. . 3
⊢ (𝑃 ≠ 1 → (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) | 
| 21 | 20 | pm5.32ri 455 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 1) ↔ ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1)) | 
| 22 |   | ancom 266 | 
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) | 
| 23 |   | anass 401 | 
. . . 4
⊢ (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) | 
| 24 | 22, 23 | bitr4i 187 | 
. . 3
⊢ (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 25 |   | ancom 266 | 
. . . . 5
⊢ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1)) | 
| 26 |   | eluz2b3 9678 | 
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1)) | 
| 27 | 25, 26 | bitr4i 187 | 
. . . 4
⊢ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ 𝑃 ∈
(ℤ≥‘2)) | 
| 28 | 27 | anbi1i 458 | 
. . 3
⊢ (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ {𝑛 ∈ ℕ
∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) | 
| 29 |   | dfss2 3172 | 
. . . . 5
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃})) | 
| 30 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝑛 ∥ 𝑃 ↔ 𝑧 ∥ 𝑃)) | 
| 31 | 30 | elrab 2920 | 
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) | 
| 32 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑧 ∈ V | 
| 33 | 32 | elpr 3643 | 
. . . . . . . . 9
⊢ (𝑧 ∈ {1, 𝑃} ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃)) | 
| 34 | 31, 33 | imbi12i 239 | 
. . . . . . . 8
⊢ ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 35 |   | impexp 263 | 
. . . . . . . 8
⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 36 | 34, 35 | bitri 184 | 
. . . . . . 7
⊢ ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 37 | 36 | albii 1484 | 
. . . . . 6
⊢
(∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 38 |   | df-ral 2480 | 
. . . . . 6
⊢
(∀𝑧 ∈
ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 39 | 37, 38 | bitr4i 187 | 
. . . . 5
⊢
(∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 40 | 29, 39 | bitri 184 | 
. . . 4
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 41 | 40 | anbi2i 457 | 
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ ∀𝑧 ∈
ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 42 | 24, 28, 41 | 3bitri 206 | 
. 2
⊢ (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ ∀𝑧 ∈
ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 43 | 6, 21, 42 | 3bitri 206 | 
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |