ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2 GIF version

Theorem isprm2 12049
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1nprm 12046 . . . . 5 ¬ 1 ∈ ℙ
2 eleq1 2229 . . . . . 6 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
32biimpcd 158 . . . . 5 (𝑃 ∈ ℙ → (𝑃 = 1 → 1 ∈ ℙ))
41, 3mtoi 654 . . . 4 (𝑃 ∈ ℙ → ¬ 𝑃 = 1)
54neqned 2343 . . 3 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
65pm4.71i 389 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 1))
7 isprm 12041 . . . 4 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
8 isprm2lem 12048 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
9 eqss 3157 . . . . . . . . . . 11 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃}))
109imbi2i 225 . . . . . . . . . 10 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
11 1idssfct 12047 . . . . . . . . . . 11 (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
12 jcab 593 . . . . . . . . . . 11 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
1311, 12mpbiran2 931 . . . . . . . . . 10 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1410, 13bitri 183 . . . . . . . . 9 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1514pm5.74ri 180 . . . . . . . 8 (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1615adantr 274 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
178, 16bitrd 187 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1817expcom 115 . . . . 5 (𝑃 ≠ 1 → (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
1918pm5.32d 446 . . . 4 (𝑃 ≠ 1 → ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
207, 19syl5bb 191 . . 3 (𝑃 ≠ 1 → (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2120pm5.32ri 451 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 1) ↔ ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1))
22 ancom 264 . . . 4 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
23 anass 399 . . . 4 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2422, 23bitr4i 186 . . 3 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
25 ancom 264 . . . . 5 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
26 eluz2b3 9542 . . . . 5 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
2725, 26bitr4i 186 . . . 4 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ 𝑃 ∈ (ℤ‘2))
2827anbi1i 454 . . 3 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
29 dfss2 3131 . . . . 5 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}))
30 breq1 3985 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑛𝑃𝑧𝑃))
3130elrab 2882 . . . . . . . . 9 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ (𝑧 ∈ ℕ ∧ 𝑧𝑃))
32 vex 2729 . . . . . . . . . 10 𝑧 ∈ V
3332elpr 3597 . . . . . . . . 9 (𝑧 ∈ {1, 𝑃} ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))
3431, 33imbi12i 238 . . . . . . . 8 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
35 impexp 261 . . . . . . . 8 (((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3634, 35bitri 183 . . . . . . 7 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3736albii 1458 . . . . . 6 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
38 df-ral 2449 . . . . . 6 (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3937, 38bitr4i 186 . . . . 5 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4029, 39bitri 183 . . . 4 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4140anbi2i 453 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
4224, 28, 413bitri 205 . 2 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
436, 21, 423bitri 205 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wal 1341   = wceq 1343  wcel 2136  wne 2336  wral 2444  {crab 2448  wss 3116  {cpr 3577   class class class wbr 3982  cfv 5188  2oc2o 6378  cen 6704  1c1 7754  cn 8857  2c2 8908  cuz 9466  cdvds 11727  cprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-prm 12040
This theorem is referenced by:  isprm3  12050  isprm4  12051  dvdsprime  12054  coprm  12076  isprm6  12079  infpn2  12389
  Copyright terms: Public domain W3C validator