ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr GIF version

Theorem sylan9bbr 459
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1 (𝜑 → (𝜓𝜒))
sylan9bbr.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bbr ((𝜃𝜑) → (𝜓𝜏))

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9bbr.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 458 . 2 ((𝜑𝜃) → (𝜓𝜏))
43ancoms 266 1 ((𝜃𝜑) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.75  952  mpteq12f  4062  opelopabsb  4238  elreimasng  4970  fvelrnb  5534  fmptco  5651  fconstfvm  5703  f1oiso  5794  canth  5796  mpoeq123  5901  dfoprab4f  6161  fmpox  6168  nnmword  6486  elfi  6936  ltmpig  7280  mul0eqap  8567  qreccl  9580  0fz1  9980  zmodid2  10287  divgcdcoprm0  12033  cnptoprest  12879  txrest  12916  cbvrald  13669
  Copyright terms: Public domain W3C validator