ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr GIF version

Theorem sylan9bbr 463
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1 (𝜑 → (𝜓𝜒))
sylan9bbr.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bbr ((𝜃𝜑) → (𝜓𝜏))

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9bbr.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 462 . 2 ((𝜑𝜃) → (𝜓𝜏))
43ancoms 268 1 ((𝜃𝜑) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.75  965  mpteq12f  4140  opelopabsb  4324  elrelimasn  5067  fvelrnb  5649  fmptco  5769  fconstfvm  5825  f1oiso  5918  canth  5920  mpoeq123  6027  elovmporab  6169  elovmporab1w  6170  dfoprab4f  6302  fmpox  6309  nnmword  6627  elfi  7099  ltmpig  7487  mul0eqap  8778  qreccl  9798  0fz1  10202  zmodid2  10534  divgcdcoprm0  12538  cnptoprest  14826  txrest  14863  uhgreq12g  15787  cbvrald  15924
  Copyright terms: Public domain W3C validator