ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr GIF version

Theorem sylan9bbr 460
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1 (𝜑 → (𝜓𝜒))
sylan9bbr.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bbr ((𝜃𝜑) → (𝜓𝜏))

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9bbr.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 459 . 2 ((𝜑𝜃) → (𝜓𝜏))
43ancoms 266 1 ((𝜃𝜑) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.75  957  mpteq12f  4069  opelopabsb  4245  elreimasng  4977  fvelrnb  5544  fmptco  5662  fconstfvm  5714  f1oiso  5805  canth  5807  mpoeq123  5912  dfoprab4f  6172  fmpox  6179  nnmword  6497  elfi  6948  ltmpig  7301  mul0eqap  8588  qreccl  9601  0fz1  10001  zmodid2  10308  divgcdcoprm0  12055  cnptoprest  13033  txrest  13070  cbvrald  13823
  Copyright terms: Public domain W3C validator