| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bbr | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 462 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.75 965 mpteq12f 4124 opelopabsb 4306 elrelimasn 5048 fvelrnb 5626 fmptco 5746 fconstfvm 5802 f1oiso 5895 canth 5897 mpoeq123 6004 elovmporab 6146 elovmporab1w 6147 dfoprab4f 6279 fmpox 6286 nnmword 6604 elfi 7073 ltmpig 7452 mul0eqap 8743 qreccl 9763 0fz1 10167 zmodid2 10497 divgcdcoprm0 12423 cnptoprest 14711 txrest 14748 cbvrald 15724 |
| Copyright terms: Public domain | W3C validator |