ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr GIF version

Theorem sylan9bbr 463
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1 (𝜑 → (𝜓𝜒))
sylan9bbr.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bbr ((𝜃𝜑) → (𝜓𝜏))

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9bbr.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 462 . 2 ((𝜑𝜃) → (𝜓𝜏))
43ancoms 268 1 ((𝜃𝜑) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.75  968  mpteq12f  4163  opelopabsb  4347  elrelimasn  5093  fvelrnb  5680  fmptco  5800  fconstfvm  5856  f1oiso  5949  canth  5951  mpoeq123  6062  elovmporab  6204  elovmporab1w  6205  dfoprab4f  6337  fmpox  6344  nnmword  6662  elfi  7134  ltmpig  7522  mul0eqap  8813  qreccl  9833  0fz1  10237  zmodid2  10569  divgcdcoprm0  12618  cnptoprest  14907  txrest  14944  uhgreq12g  15870  cbvrald  16110
  Copyright terms: Public domain W3C validator