Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9bbr | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 462 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 268 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.75 962 mpteq12f 4078 opelopabsb 4254 elreimasng 4987 fvelrnb 5555 fmptco 5674 fconstfvm 5726 f1oiso 5817 canth 5819 mpoeq123 5924 dfoprab4f 6184 fmpox 6191 nnmword 6509 elfi 6960 ltmpig 7313 mul0eqap 8600 qreccl 9615 0fz1 10015 zmodid2 10322 divgcdcoprm0 12068 cnptoprest 13319 txrest 13356 cbvrald 14109 |
Copyright terms: Public domain | W3C validator |