| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bbr | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 462 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.75 965 mpteq12f 4140 opelopabsb 4324 elrelimasn 5067 fvelrnb 5649 fmptco 5769 fconstfvm 5825 f1oiso 5918 canth 5920 mpoeq123 6027 elovmporab 6169 elovmporab1w 6170 dfoprab4f 6302 fmpox 6309 nnmword 6627 elfi 7099 ltmpig 7487 mul0eqap 8778 qreccl 9798 0fz1 10202 zmodid2 10534 divgcdcoprm0 12538 cnptoprest 14826 txrest 14863 uhgreq12g 15787 cbvrald 15924 |
| Copyright terms: Public domain | W3C validator |