ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr GIF version

Theorem sylan9bbr 463
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1 (𝜑 → (𝜓𝜒))
sylan9bbr.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bbr ((𝜃𝜑) → (𝜓𝜏))

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9bbr.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 462 . 2 ((𝜑𝜃) → (𝜓𝜏))
43ancoms 268 1 ((𝜃𝜑) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.75  964  mpteq12f  4114  opelopabsb  4295  elrelimasn  5036  fvelrnb  5611  fmptco  5731  fconstfvm  5783  f1oiso  5876  canth  5878  mpoeq123  5985  elovmporab  6127  elovmporab1w  6128  dfoprab4f  6260  fmpox  6267  nnmword  6585  elfi  7046  ltmpig  7423  mul0eqap  8714  qreccl  9733  0fz1  10137  zmodid2  10461  divgcdcoprm0  12294  cnptoprest  14559  txrest  14596  cbvrald  15518
  Copyright terms: Public domain W3C validator