ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr GIF version

Theorem sylan9bbr 463
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1 (𝜑 → (𝜓𝜒))
sylan9bbr.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bbr ((𝜃𝜑) → (𝜓𝜏))

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9bbr.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 462 . 2 ((𝜑𝜃) → (𝜓𝜏))
43ancoms 268 1 ((𝜃𝜑) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.75  964  mpteq12f  4123  opelopabsb  4305  elrelimasn  5047  fvelrnb  5625  fmptco  5745  fconstfvm  5801  f1oiso  5894  canth  5896  mpoeq123  6003  elovmporab  6145  elovmporab1w  6146  dfoprab4f  6278  fmpox  6285  nnmword  6603  elfi  7072  ltmpig  7451  mul0eqap  8742  qreccl  9762  0fz1  10166  zmodid2  10495  divgcdcoprm0  12394  cnptoprest  14682  txrest  14719  cbvrald  15686
  Copyright terms: Public domain W3C validator