Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9bbr | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 459 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 266 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.75 957 mpteq12f 4069 opelopabsb 4245 elreimasng 4977 fvelrnb 5544 fmptco 5662 fconstfvm 5714 f1oiso 5805 canth 5807 mpoeq123 5912 dfoprab4f 6172 fmpox 6179 nnmword 6497 elfi 6948 ltmpig 7301 mul0eqap 8588 qreccl 9601 0fz1 10001 zmodid2 10308 divgcdcoprm0 12055 cnptoprest 13033 txrest 13070 cbvrald 13823 |
Copyright terms: Public domain | W3C validator |