Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.26-3 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
r19.26-3 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | ralbii 2476 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | r19.26 2596 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
4 | r19.26 2596 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
5 | 4 | anbi1i 455 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
6 | df-3an 975 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
7 | 5, 6 | bitr4i 186 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
8 | 2, 3, 7 | 3bitri 205 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-ral 2453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |