![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.26-3 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
r19.26-3 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 980 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | ralbii 2483 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | r19.26 2603 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
4 | r19.26 2603 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
5 | 4 | anbi1i 458 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
6 | df-3an 980 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
7 | 5, 6 | bitr4i 187 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-ral 2460 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |