ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26 GIF version

Theorem r19.26 2657
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21ralimi 2593 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43ralimi 2593 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜓)
52, 4jca 306 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
6 pm3.2 139 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76ral2imi 2595 . . 3 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 (𝜑𝜓)))
87imp 124 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
95, 8impbii 126 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117  df-ral 2513
This theorem is referenced by:  r19.27v  2658  r19.28v  2659  r19.26-2  2660  r19.26-3  2661  ralbiim  2665  r19.27av  2666  reu8  2999  ssrab  3302  r19.28m  3581  r19.27m  3587  2ralunsn  3876  iuneq2  3980  cnvpom  5270  funco  5357  fncnv  5386  funimaexglem  5403  fnres  5439  fnopabg  5446  mpteqb  5724  eqfnfv3  5733  caoftrn  6249  iinerm  6752  ixpeq2  6857  ixpin  6868  rexanuz  11494  recvguniq  11501  cau3lem  11620  rexanre  11726  bezoutlemmo  12522  sqrt2irr  12679  pc11  12849  issubg3  13724  issubg4m  13725  ringsrg  14005  tgval2  14719  metequiv  15163  metequiv2  15164  mulcncflem  15275  2sqlem6  15793  bj-indind  16253
  Copyright terms: Public domain W3C validator