ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26 GIF version

Theorem r19.26 2631
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21ralimi 2568 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43ralimi 2568 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜓)
52, 4jca 306 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
6 pm3.2 139 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76ral2imi 2570 . . 3 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 (𝜑𝜓)))
87imp 124 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
95, 8impbii 126 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471
This theorem depends on definitions:  df-bi 117  df-ral 2488
This theorem is referenced by:  r19.27v  2632  r19.28v  2633  r19.26-2  2634  r19.26-3  2635  ralbiim  2639  r19.27av  2640  reu8  2968  ssrab  3270  r19.28m  3549  r19.27m  3555  2ralunsn  3838  iuneq2  3942  cnvpom  5224  funco  5310  fncnv  5339  funimaexglem  5356  fnres  5391  fnopabg  5398  mpteqb  5669  eqfnfv3  5678  caoftrn  6190  iinerm  6693  ixpeq2  6798  ixpin  6809  rexanuz  11241  recvguniq  11248  cau3lem  11367  rexanre  11473  bezoutlemmo  12269  sqrt2irr  12426  pc11  12596  issubg3  13470  issubg4m  13471  ringsrg  13751  tgval2  14465  metequiv  14909  metequiv2  14910  mulcncflem  15021  2sqlem6  15539  bj-indind  15801
  Copyright terms: Public domain W3C validator