ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26 GIF version

Theorem r19.26 2623
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21ralimi 2560 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43ralimi 2560 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜓)
52, 4jca 306 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
6 pm3.2 139 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76ral2imi 2562 . . 3 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 (𝜑𝜓)))
87imp 124 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
95, 8impbii 126 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117  df-ral 2480
This theorem is referenced by:  r19.27v  2624  r19.28v  2625  r19.26-2  2626  r19.26-3  2627  ralbiim  2631  r19.27av  2632  reu8  2960  ssrab  3262  r19.28m  3541  r19.27m  3547  2ralunsn  3829  iuneq2  3933  cnvpom  5213  funco  5299  fncnv  5325  funimaexglem  5342  fnres  5377  fnopabg  5384  mpteqb  5655  eqfnfv3  5664  caoftrn  6172  iinerm  6675  ixpeq2  6780  ixpin  6791  rexanuz  11170  recvguniq  11177  cau3lem  11296  rexanre  11402  bezoutlemmo  12198  sqrt2irr  12355  pc11  12525  issubg3  13398  issubg4m  13399  ringsrg  13679  tgval2  14371  metequiv  14815  metequiv2  14816  mulcncflem  14927  2sqlem6  15445  bj-indind  15662
  Copyright terms: Public domain W3C validator