ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26 GIF version

Theorem r19.26 2596
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 108 . . . 4 ((𝜑𝜓) → 𝜑)
21ralimi 2533 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜑)
3 simpr 109 . . . 4 ((𝜑𝜓) → 𝜓)
43ralimi 2533 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜓)
52, 4jca 304 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
6 pm3.2 138 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76ral2imi 2535 . . 3 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 (𝜑𝜓)))
87imp 123 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
95, 8impbii 125 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-ral 2453
This theorem is referenced by:  r19.27v  2597  r19.28v  2598  r19.26-2  2599  r19.26-3  2600  ralbiim  2604  r19.27av  2605  reu8  2926  ssrab  3225  r19.28m  3503  r19.27m  3509  2ralunsn  3783  iuneq2  3887  cnvpom  5151  funco  5236  fncnv  5262  funimaexglem  5279  fnres  5312  fnopabg  5319  mpteqb  5584  eqfnfv3  5593  caoftrn  6083  iinerm  6581  ixpeq2  6686  ixpin  6697  rexanuz  10939  recvguniq  10946  cau3lem  11065  rexanre  11171  bezoutlemmo  11948  sqrt2irr  12103  pc11  12271  tgval2  12804  metequiv  13248  metequiv2  13249  mulcncflem  13343  2sqlem6  13709  bj-indind  13927
  Copyright terms: Public domain W3C validator