| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26 | GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 2570 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 2570 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 139 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 2572 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 124 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2490 |
| This theorem is referenced by: r19.27v 2634 r19.28v 2635 r19.26-2 2636 r19.26-3 2637 ralbiim 2641 r19.27av 2642 reu8 2973 ssrab 3275 r19.28m 3554 r19.27m 3560 2ralunsn 3848 iuneq2 3952 cnvpom 5239 funco 5325 fncnv 5354 funimaexglem 5371 fnres 5407 fnopabg 5414 mpteqb 5688 eqfnfv3 5697 caoftrn 6209 iinerm 6712 ixpeq2 6817 ixpin 6828 rexanuz 11384 recvguniq 11391 cau3lem 11510 rexanre 11616 bezoutlemmo 12412 sqrt2irr 12569 pc11 12739 issubg3 13613 issubg4m 13614 ringsrg 13894 tgval2 14608 metequiv 15052 metequiv2 15053 mulcncflem 15164 2sqlem6 15682 bj-indind 16037 |
| Copyright terms: Public domain | W3C validator |