ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26 GIF version

Theorem r19.26 2603
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21ralimi 2540 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43ralimi 2540 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜓)
52, 4jca 306 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
6 pm3.2 139 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76ral2imi 2542 . . 3 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 (𝜑𝜓)))
87imp 124 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
95, 8impbii 126 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449
This theorem depends on definitions:  df-bi 117  df-ral 2460
This theorem is referenced by:  r19.27v  2604  r19.28v  2605  r19.26-2  2606  r19.26-3  2607  ralbiim  2611  r19.27av  2612  reu8  2934  ssrab  3234  r19.28m  3513  r19.27m  3519  2ralunsn  3799  iuneq2  3903  cnvpom  5172  funco  5257  fncnv  5283  funimaexglem  5300  fnres  5333  fnopabg  5340  mpteqb  5607  eqfnfv3  5616  caoftrn  6108  iinerm  6607  ixpeq2  6712  ixpin  6723  rexanuz  10997  recvguniq  11004  cau3lem  11123  rexanre  11229  bezoutlemmo  12007  sqrt2irr  12162  pc11  12330  issubg3  13052  issubg4m  13053  ringsrg  13224  tgval2  13554  metequiv  13998  metequiv2  13999  mulcncflem  14093  2sqlem6  14470  bj-indind  14687
  Copyright terms: Public domain W3C validator