Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.26 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 2533 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 2533 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 138 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 2535 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 123 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 125 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: r19.27v 2597 r19.28v 2598 r19.26-2 2599 r19.26-3 2600 ralbiim 2604 r19.27av 2605 reu8 2926 ssrab 3225 r19.28m 3504 r19.27m 3510 2ralunsn 3785 iuneq2 3889 cnvpom 5153 funco 5238 fncnv 5264 funimaexglem 5281 fnres 5314 fnopabg 5321 mpteqb 5586 eqfnfv3 5595 caoftrn 6086 iinerm 6585 ixpeq2 6690 ixpin 6701 rexanuz 10952 recvguniq 10959 cau3lem 11078 rexanre 11184 bezoutlemmo 11961 sqrt2irr 12116 pc11 12284 tgval2 12845 metequiv 13289 metequiv2 13290 mulcncflem 13384 2sqlem6 13750 bj-indind 13967 |
Copyright terms: Public domain | W3C validator |