ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29d2r GIF version

Theorem r19.29d2r 2601
Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
r19.29d2r.1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
r19.29d2r.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
Assertion
Ref Expression
r19.29d2r (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))

Proof of Theorem r19.29d2r
StepHypRef Expression
1 r19.29d2r.1 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
2 r19.29d2r.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
3 r19.29 2594 . . 3 ((∀𝑥𝐴𝑦𝐵 𝜓 ∧ ∃𝑥𝐴𝑦𝐵 𝜒) → ∃𝑥𝐴 (∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒))
41, 2, 3syl2anc 409 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒))
5 r19.29 2594 . . 3 ((∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒) → ∃𝑦𝐵 (𝜓𝜒))
65reximi 2554 . 2 (∃𝑥𝐴 (∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒) → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
74, 6syl 14 1 (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wral 2435  wrex 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-ral 2440  df-rex 2441
This theorem is referenced by:  r19.29vva  2602  cauappcvgprlemdisj  7573
  Copyright terms: Public domain W3C validator