| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.29d2r | GIF version | ||
| Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| r19.29d2r.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | 
| r19.29d2r.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | 
| Ref | Expression | 
|---|---|
| r19.29d2r | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29d2r.1 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | |
| 2 | r19.29d2r.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | |
| 3 | r19.29 2634 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒)) | |
| 4 | 1, 2, 3 | syl2anc 411 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒)) | 
| 5 | r19.29 2634 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | |
| 6 | 5 | reximi 2594 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | 
| 7 | 4, 6 | syl 14 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: r19.29vva 2642 cauappcvgprlemdisj 7718 | 
| Copyright terms: Public domain | W3C validator |