| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.29a | GIF version | ||
| Description: A commonly used pattern based on r19.29 2634. (Contributed by Thierry Arnoux, 22-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29a.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29a.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29a | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | r19.29a.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 3 | r19.29a.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 1, 2, 3 | r19.29af 2638 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: cnegexlem3 8203 cnegex 8204 modqmuladdnn0 10460 uzwodc 12204 1arith 12536 mhmid 13245 mhmmnd 13246 ghmgrp 13248 ghmcmn 13457 ringinvnz1ne0 13605 neitx 14504 |
| Copyright terms: Public domain | W3C validator |