| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.29a | GIF version | ||
| Description: A commonly used pattern based on r19.29 2644. (Contributed by Thierry Arnoux, 22-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29a.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29a.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29a | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | r19.29a.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 3 | r19.29a.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 1, 2, 3 | r19.29af 2648 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: cnegexlem3 8262 cnegex 8263 modqmuladdnn0 10526 uzwodc 12408 1arith 12740 mhmid 13501 mhmmnd 13502 ghmgrp 13504 ghmcmn 13713 ringinvnz1ne0 13861 neitx 14790 |
| Copyright terms: Public domain | W3C validator |