ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29 GIF version

Theorem r19.29 2642
Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.29 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29
StepHypRef Expression
1 pm3.2 139 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
21ralimi 2568 . . 3 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓 → (𝜑𝜓)))
3 rexim 2599 . . 3 (∀𝑥𝐴 (𝜓 → (𝜑𝜓)) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
42, 3syl 14 . 2 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
54imp 124 1 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2483  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-ral 2488  df-rex 2489
This theorem is referenced by:  r19.29r  2643  r19.29d2r  2649  r19.35-1  2655  triun  4154  ralxfrd  4507  elrnmptg  4928  fun11iun  5537  fmpt  5724  fliftfun  5855  rhmdvdsr  13855  epttop  14480  tgcnp  14599  lmtopcnp  14640  txlm  14669  metss  14884  bj-findis  15779
  Copyright terms: Public domain W3C validator