ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29 GIF version

Theorem r19.29 2634
Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.29 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29
StepHypRef Expression
1 pm3.2 139 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
21ralimi 2560 . . 3 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓 → (𝜑𝜓)))
3 rexim 2591 . . 3 (∀𝑥𝐴 (𝜓 → (𝜑𝜓)) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
42, 3syl 14 . 2 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
54imp 124 1 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2475  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-ral 2480  df-rex 2481
This theorem is referenced by:  r19.29r  2635  r19.29d2r  2641  r19.35-1  2647  triun  4144  ralxfrd  4497  elrnmptg  4918  fun11iun  5525  fmpt  5712  fliftfun  5843  rhmdvdsr  13731  epttop  14326  tgcnp  14445  lmtopcnp  14486  txlm  14515  metss  14730  bj-findis  15625
  Copyright terms: Public domain W3C validator