| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.29 | GIF version | ||
| Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralimi 2560 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓))) |
| 3 | rexim 2591 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 5 | 4 | imp 124 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wral 2475 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.29r 2635 r19.29d2r 2641 r19.35-1 2647 triun 4144 ralxfrd 4497 elrnmptg 4918 fun11iun 5525 fmpt 5712 fliftfun 5843 rhmdvdsr 13731 epttop 14326 tgcnp 14445 lmtopcnp 14486 txlm 14515 metss 14730 bj-findis 15625 |
| Copyright terms: Public domain | W3C validator |