ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29d2r Unicode version

Theorem r19.29d2r 2551
Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
r19.29d2r.1  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
r19.29d2r.2  |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ch )
Assertion
Ref Expression
r19.29d2r  |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ( ps  /\  ch )
)

Proof of Theorem r19.29d2r
StepHypRef Expression
1 r19.29d2r.1 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
2 r19.29d2r.2 . . 3  |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ch )
3 r19.29 2544 . . 3  |-  ( ( A. x  e.  A  A. y  e.  B  ps  /\  E. x  e.  A  E. y  e.  B  ch )  ->  E. x  e.  A  ( A. y  e.  B  ps  /\  E. y  e.  B  ch ) )
41, 2, 3syl2anc 406 . 2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  ps  /\  E. y  e.  B  ch ) )
5 r19.29 2544 . . 3  |-  ( ( A. y  e.  B  ps  /\  E. y  e.  B  ch )  ->  E. y  e.  B  ( ps  /\  ch )
)
65reximi 2504 . 2  |-  ( E. x  e.  A  ( A. y  e.  B  ps  /\  E. y  e.  B  ch )  ->  E. x  e.  A  E. y  e.  B  ( ps  /\  ch )
)
74, 6syl 14 1  |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wral 2391   E.wrex 2392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-ral 2396  df-rex 2397
This theorem is referenced by:  r19.29vva  2552  cauappcvgprlemdisj  7423
  Copyright terms: Public domain W3C validator