ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemdisj GIF version

Theorem cauappcvgprlemdisj 7154
Description: Lemma for cauappcvgpr 7165. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemdisj
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.app . . . . . . 7 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
2 simpl 107 . . . . . . . . 9 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
32ralimi 2434 . . . . . . . 8 (∀𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
43ralimi 2434 . . . . . . 7 (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
51, 4syl 14 . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
65adantr 270 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
7 oveq1 5620 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
87breq1d 3830 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
98rexbidv 2377 . . . . . . . . . . 11 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
10 cauappcvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
1110fveq2i 5271 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
12 nqex 6866 . . . . . . . . . . . . . 14 Q ∈ V
1312rabex 3958 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
1412rabex 3958 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
1513, 14op1st 5874 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
1611, 15eqtri 2105 . . . . . . . . . . 11 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
179, 16elrab2 2765 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
1817simprbi 269 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
19 oveq2 5621 . . . . . . . . . . 11 (𝑞 = 𝑝 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑝))
20 fveq2 5268 . . . . . . . . . . 11 (𝑞 = 𝑝 → (𝐹𝑞) = (𝐹𝑝))
2119, 20breq12d 3833 . . . . . . . . . 10 (𝑞 = 𝑝 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑝) <Q (𝐹𝑝)))
2221cbvrexv 2587 . . . . . . . . 9 (∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝))
2318, 22sylib 120 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → ∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝))
24 breq2 3824 . . . . . . . . . . 11 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2524rexbidv 2377 . . . . . . . . . 10 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2610fveq2i 5271 . . . . . . . . . . 11 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
2713, 14op2nd 5875 . . . . . . . . . . 11 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2826, 27eqtri 2105 . . . . . . . . . 10 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2925, 28elrab2 2765 . . . . . . . . 9 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3029simprbi 269 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
3123, 30anim12i 331 . . . . . . 7 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
32 reeanv 2532 . . . . . . 7 (∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ (∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3331, 32sylibr 132 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3433adantl 271 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
356, 34r19.29d2r 2508 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
36 simprl 498 . . . . . . . . . . . 12 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 +Q 𝑝) <Q (𝐹𝑝))
37 simpl 107 . . . . . . . . . . . 12 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
3836, 37jca 300 . . . . . . . . . . 11 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
3917simplbi 268 . . . . . . . . . . . . . . 15 (𝑠 ∈ (1st𝐿) → 𝑠Q)
4039adantr 270 . . . . . . . . . . . . . 14 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → 𝑠Q)
4140ad3antlr 477 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑠Q)
42 simplr 497 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑝Q)
43 addclnq 6878 . . . . . . . . . . . . 13 ((𝑠Q𝑝Q) → (𝑠 +Q 𝑝) ∈ Q)
4441, 42, 43syl2anc 403 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 +Q 𝑝) ∈ Q)
45 cauappcvgpr.f . . . . . . . . . . . . . 14 (𝜑𝐹:QQ)
4645ad3antrrr 476 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝐹:QQ)
4746, 42ffvelrnd 5398 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝐹𝑝) ∈ Q)
48 simpr 108 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑞Q)
4946, 48ffvelrnd 5398 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝐹𝑞) ∈ Q)
50 addclnq 6878 . . . . . . . . . . . . . 14 ((𝑝Q𝑞Q) → (𝑝 +Q 𝑞) ∈ Q)
5142, 48, 50syl2anc 403 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑝 +Q 𝑞) ∈ Q)
52 addclnq 6878 . . . . . . . . . . . . 13 (((𝐹𝑞) ∈ Q ∧ (𝑝 +Q 𝑞) ∈ Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)
5349, 51, 52syl2anc 403 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)
54 ltsonq 6901 . . . . . . . . . . . . 13 <Q Or Q
55 sotr 4119 . . . . . . . . . . . . 13 (( <Q Or Q ∧ ((𝑠 +Q 𝑝) ∈ Q ∧ (𝐹𝑝) ∈ Q ∧ ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5654, 55mpan 415 . . . . . . . . . . . 12 (((𝑠 +Q 𝑝) ∈ Q ∧ (𝐹𝑝) ∈ Q ∧ ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5744, 47, 53, 56syl3anc 1172 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5838, 57syl5 32 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
59 simprr 499 . . . . . . . . . . 11 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
6059a1i 9 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
6158, 60jcad 301 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
62 addcomnqg 6884 . . . . . . . . . . . 12 ((𝑠Q𝑝Q) → (𝑠 +Q 𝑝) = (𝑝 +Q 𝑠))
6341, 42, 62syl2anc 403 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 +Q 𝑝) = (𝑝 +Q 𝑠))
64 addcomnqg 6884 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
6564adantl 271 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
66 addassnqg 6885 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
6766adantl 271 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
6849, 42, 48, 65, 67caov12d 5783 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = (𝑝 +Q ((𝐹𝑞) +Q 𝑞)))
6963, 68breq12d 3833 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7069anbi1d 453 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
7161, 70sylibd 147 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
72 addclnq 6878 . . . . . . . . . . 11 (((𝐹𝑞) ∈ Q𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
7349, 48, 72syl2anc 403 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
74 ltanqg 6903 . . . . . . . . . 10 ((𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q𝑝Q) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7541, 73, 42, 74syl3anc 1172 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7675anbi1d 453 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
7771, 76sylibrd 167 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
78 so2nr 4122 . . . . . . . . . 10 (( <Q Or Q ∧ (𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q)) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
7954, 78mpan 415 . . . . . . . . 9 ((𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
8041, 73, 79syl2anc 403 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
8180pm2.21d 582 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) → ⊥))
8277, 81syld 44 . . . . . 6 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8382rexlimdva 2485 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) → (∃𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8483rexlimdva 2485 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8535, 84mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
8685inegd 1306 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
8786ralrimivw 2443 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wfal 1292  wcel 1436  wral 2355  wrex 2356  {crab 2359  cop 3434   class class class wbr 3820   Or wor 4096  wf 4977  cfv 4981  (class class class)co 5613  1st c1st 5866  2nd c2nd 5867  Qcnq 6783   +Q cplq 6785   <Q cltq 6788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-eprel 4090  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-oadd 6139  df-omul 6140  df-er 6244  df-ec 6246  df-qs 6250  df-ni 6807  df-pli 6808  df-mi 6809  df-lti 6810  df-plpq 6847  df-enq 6850  df-nqqs 6851  df-plqqs 6852  df-ltnqqs 6856
This theorem is referenced by:  cauappcvgprlemcl  7156
  Copyright terms: Public domain W3C validator