ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemdisj GIF version

Theorem cauappcvgprlemdisj 7482
Description: Lemma for cauappcvgpr 7493. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemdisj
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.app . . . . . . 7 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
2 simpl 108 . . . . . . . . 9 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
32ralimi 2498 . . . . . . . 8 (∀𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
43ralimi 2498 . . . . . . 7 (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
51, 4syl 14 . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
65adantr 274 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
7 oveq1 5788 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
87breq1d 3946 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
98rexbidv 2439 . . . . . . . . . . 11 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
10 cauappcvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
1110fveq2i 5431 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
12 nqex 7194 . . . . . . . . . . . . . 14 Q ∈ V
1312rabex 4079 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
1412rabex 4079 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
1513, 14op1st 6051 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
1611, 15eqtri 2161 . . . . . . . . . . 11 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
179, 16elrab2 2846 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
1817simprbi 273 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
19 oveq2 5789 . . . . . . . . . . 11 (𝑞 = 𝑝 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑝))
20 fveq2 5428 . . . . . . . . . . 11 (𝑞 = 𝑝 → (𝐹𝑞) = (𝐹𝑝))
2119, 20breq12d 3949 . . . . . . . . . 10 (𝑞 = 𝑝 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑝) <Q (𝐹𝑝)))
2221cbvrexv 2658 . . . . . . . . 9 (∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝))
2318, 22sylib 121 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → ∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝))
24 breq2 3940 . . . . . . . . . . 11 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2524rexbidv 2439 . . . . . . . . . 10 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2610fveq2i 5431 . . . . . . . . . . 11 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
2713, 14op2nd 6052 . . . . . . . . . . 11 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2826, 27eqtri 2161 . . . . . . . . . 10 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2925, 28elrab2 2846 . . . . . . . . 9 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3029simprbi 273 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
3123, 30anim12i 336 . . . . . . 7 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
32 reeanv 2603 . . . . . . 7 (∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ (∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3331, 32sylibr 133 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3433adantl 275 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
356, 34r19.29d2r 2579 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
36 simprl 521 . . . . . . . . . . . 12 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 +Q 𝑝) <Q (𝐹𝑝))
37 simpl 108 . . . . . . . . . . . 12 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
3836, 37jca 304 . . . . . . . . . . 11 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
3917simplbi 272 . . . . . . . . . . . . . . 15 (𝑠 ∈ (1st𝐿) → 𝑠Q)
4039adantr 274 . . . . . . . . . . . . . 14 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → 𝑠Q)
4140ad3antlr 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑠Q)
42 simplr 520 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑝Q)
43 addclnq 7206 . . . . . . . . . . . . 13 ((𝑠Q𝑝Q) → (𝑠 +Q 𝑝) ∈ Q)
4441, 42, 43syl2anc 409 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 +Q 𝑝) ∈ Q)
45 cauappcvgpr.f . . . . . . . . . . . . . 14 (𝜑𝐹:QQ)
4645ad3antrrr 484 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝐹:QQ)
4746, 42ffvelrnd 5563 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝐹𝑝) ∈ Q)
48 simpr 109 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑞Q)
4946, 48ffvelrnd 5563 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝐹𝑞) ∈ Q)
50 addclnq 7206 . . . . . . . . . . . . . 14 ((𝑝Q𝑞Q) → (𝑝 +Q 𝑞) ∈ Q)
5142, 48, 50syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑝 +Q 𝑞) ∈ Q)
52 addclnq 7206 . . . . . . . . . . . . 13 (((𝐹𝑞) ∈ Q ∧ (𝑝 +Q 𝑞) ∈ Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)
5349, 51, 52syl2anc 409 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)
54 ltsonq 7229 . . . . . . . . . . . . 13 <Q Or Q
55 sotr 4247 . . . . . . . . . . . . 13 (( <Q Or Q ∧ ((𝑠 +Q 𝑝) ∈ Q ∧ (𝐹𝑝) ∈ Q ∧ ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5654, 55mpan 421 . . . . . . . . . . . 12 (((𝑠 +Q 𝑝) ∈ Q ∧ (𝐹𝑝) ∈ Q ∧ ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5744, 47, 53, 56syl3anc 1217 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5838, 57syl5 32 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
59 simprr 522 . . . . . . . . . . 11 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
6059a1i 9 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
6158, 60jcad 305 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
62 addcomnqg 7212 . . . . . . . . . . . 12 ((𝑠Q𝑝Q) → (𝑠 +Q 𝑝) = (𝑝 +Q 𝑠))
6341, 42, 62syl2anc 409 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 +Q 𝑝) = (𝑝 +Q 𝑠))
64 addcomnqg 7212 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
6564adantl 275 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
66 addassnqg 7213 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
6766adantl 275 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
6849, 42, 48, 65, 67caov12d 5959 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = (𝑝 +Q ((𝐹𝑞) +Q 𝑞)))
6963, 68breq12d 3949 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7069anbi1d 461 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
7161, 70sylibd 148 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
72 addclnq 7206 . . . . . . . . . . 11 (((𝐹𝑞) ∈ Q𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
7349, 48, 72syl2anc 409 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
74 ltanqg 7231 . . . . . . . . . 10 ((𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q𝑝Q) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7541, 73, 42, 74syl3anc 1217 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7675anbi1d 461 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
7771, 76sylibrd 168 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
78 so2nr 4250 . . . . . . . . . 10 (( <Q Or Q ∧ (𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q)) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
7954, 78mpan 421 . . . . . . . . 9 ((𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
8041, 73, 79syl2anc 409 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
8180pm2.21d 609 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) → ⊥))
8277, 81syld 45 . . . . . 6 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8382rexlimdva 2552 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) → (∃𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8483rexlimdva 2552 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8535, 84mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
8685inegd 1351 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
8786ralrimivw 2509 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wfal 1337  wcel 1481  wral 2417  wrex 2418  {crab 2421  cop 3534   class class class wbr 3936   Or wor 4224  wf 5126  cfv 5130  (class class class)co 5781  1st c1st 6043  2nd c2nd 6044  Qcnq 7111   +Q cplq 7113   <Q cltq 7116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-eprel 4218  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-oadd 6324  df-omul 6325  df-er 6436  df-ec 6438  df-qs 6442  df-ni 7135  df-pli 7136  df-mi 7137  df-lti 7138  df-plpq 7175  df-enq 7178  df-nqqs 7179  df-plqqs 7180  df-ltnqqs 7184
This theorem is referenced by:  cauappcvgprlemcl  7484
  Copyright terms: Public domain W3C validator