| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
| 2 | alinexa 1627 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 2492 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | 2, 3 | xchbinxr 685 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie2 1518 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: nnral 2498 rexalim 2501 ralinexa 2535 nrex 2600 nrexdv 2601 ralnex2 2647 r19.30dc 2655 uni0b 3889 iindif2m 4009 f0rn0 5492 supmoti 7121 fodjuomnilemdc 7272 ismkvnex 7283 nninfwlpoimlemginf 7304 suprnubex 9061 icc0r 10083 ioo0 10439 ico0 10441 ioc0 10442 prmind2 12557 sqrt2irr 12599 nconstwlpolem 16206 |
| Copyright terms: Public domain | W3C validator |