| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
| 2 | alinexa 1617 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 2481 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | 2, 3 | xchbinxr 684 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: nnral 2487 rexalim 2490 ralinexa 2524 nrex 2589 nrexdv 2590 ralnex2 2636 r19.30dc 2644 uni0b 3865 iindif2m 3985 f0rn0 5453 supmoti 7060 fodjuomnilemdc 7211 ismkvnex 7222 nninfwlpoimlemginf 7243 suprnubex 8982 icc0r 10003 ioo0 10351 ico0 10353 ioc0 10354 prmind2 12298 sqrt2irr 12340 nconstwlpolem 15719 |
| Copyright terms: Public domain | W3C validator |