Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralnex | GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
2 | alinexa 1591 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 2450 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | 2, 3 | xchbinxr 673 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | bitri 183 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-ral 2449 df-rex 2450 |
This theorem is referenced by: nnral 2456 rexalim 2459 ralinexa 2493 nrex 2558 nrexdv 2559 ralnex2 2605 r19.30dc 2613 uni0b 3814 iindif2m 3933 f0rn0 5382 supmoti 6958 fodjuomnilemdc 7108 ismkvnex 7119 suprnubex 8848 icc0r 9862 ioo0 10195 ico0 10197 ioc0 10198 prmind2 12052 sqrt2irr 12094 nconstwlpolem 13943 |
Copyright terms: Public domain | W3C validator |