![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralnex | GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2460 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
2 | alinexa 1603 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 2461 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | 2, 3 | xchbinxr 683 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie2 1494 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-ral 2460 df-rex 2461 |
This theorem is referenced by: nnral 2467 rexalim 2470 ralinexa 2504 nrex 2569 nrexdv 2570 ralnex2 2616 r19.30dc 2624 uni0b 3835 iindif2m 3955 f0rn0 5411 supmoti 6992 fodjuomnilemdc 7142 ismkvnex 7153 nninfwlpoimlemginf 7174 suprnubex 8910 icc0r 9926 ioo0 10260 ico0 10262 ioc0 10263 prmind2 12120 sqrt2irr 12162 nconstwlpolem 14815 |
Copyright terms: Public domain | W3C validator |