| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
| 2 | alinexa 1649 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 2514 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | 2, 3 | xchbinxr 687 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie2 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: nnral 2520 rexalim 2523 ralinexa 2557 nrex 2622 nrexdv 2623 ralnex2 2670 r19.30dc 2678 uni0b 3912 iindif2m 4032 f0rn0 5519 supmoti 7156 fodjuomnilemdc 7307 ismkvnex 7318 nninfwlpoimlemginf 7339 suprnubex 9096 icc0r 10118 ioo0 10474 ico0 10476 ioc0 10477 prmind2 12637 sqrt2irr 12679 umgrnloop0 15911 nconstwlpolem 16392 |
| Copyright terms: Public domain | W3C validator |