| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2488 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
| 2 | alinexa 1625 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 2489 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | 2, 3 | xchbinxr 684 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1370 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie2 1516 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: nnral 2495 rexalim 2498 ralinexa 2532 nrex 2597 nrexdv 2598 ralnex2 2644 r19.30dc 2652 uni0b 3874 iindif2m 3994 f0rn0 5469 supmoti 7094 fodjuomnilemdc 7245 ismkvnex 7256 nninfwlpoimlemginf 7277 suprnubex 9025 icc0r 10047 ioo0 10400 ico0 10402 ioc0 10403 prmind2 12413 sqrt2irr 12455 nconstwlpolem 15966 |
| Copyright terms: Public domain | W3C validator |