ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29r GIF version

Theorem r19.29r 2604
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 r19.29 2603 . 2 ((∀𝑥𝐴 𝜓 ∧ ∃𝑥𝐴 𝜑) → ∃𝑥𝐴 (𝜓𝜑))
2 ancom 264 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜓 ∧ ∃𝑥𝐴 𝜑))
3 ancom 264 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
43rexbii 2473 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥𝐴 (𝜓𝜑))
51, 2, 43imtr4i 200 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wral 2444  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  r19.29af2  2606  lmss  12896  metcnp3  13161
  Copyright terms: Public domain W3C validator