ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdvva GIF version

Theorem ralrimdvva 2551
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
ralrimdvva (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimdvva
StepHypRef Expression
1 ralrimdvva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21ex 114 . . 3 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
32com23 78 . 2 (𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))
43ralrimdvv 2550 1 (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449
This theorem is referenced by:  isosolem  5792  isotilem  6971
  Copyright terms: Public domain W3C validator