| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) | 
| Ref | Expression | 
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | 
| Ref | Expression | 
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2570 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) | 
| 3 | 2 | rgen 2550 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 | 
| This theorem is referenced by: rgen3 2584 f1stres 6217 f2ndres 6218 exmidonfinlem 7260 netap 7321 2onetap 7322 2omotaplemap 7324 mpomulf 8016 aptap 8677 divfnzn 9695 1arith 12536 xpsff1o 12992 mgmidmo 13015 nmznsg 13343 isabli 13430 rhmfn 13728 cnsubmlem 14134 cnsubrglem 14136 txuni2 14492 divcnap 14801 abscncf 14821 recncf 14822 imcncf 14823 cjcncf 14824 reefiso 15013 ioocosf1o 15090 sgmf 15222 perfectlem2 15236 2lgslem1b 15330 | 
| Copyright terms: Public domain | W3C validator |