ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 GIF version

Theorem rgen2 2583
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1 ((𝑥𝐴𝑦𝐵) → 𝜑)
Assertion
Ref Expression
rgen2 𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝜑)
21ralrimiva 2570 . 2 (𝑥𝐴 → ∀𝑦𝐵 𝜑)
32rgen 2550 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  rgen3  2584  f1stres  6226  f2ndres  6227  exmidonfinlem  7272  netap  7337  2onetap  7338  2omotaplemap  7340  mpomulf  8033  aptap  8694  divfnzn  9712  1arith  12561  xpsff1o  13051  mgmidmo  13074  nmznsg  13419  isabli  13506  rhmfn  13804  cnsubmlem  14210  cnsubrglem  14212  txuni2  14576  divcnap  14885  abscncf  14905  recncf  14906  imcncf  14907  cjcncf  14908  reefiso  15097  ioocosf1o  15174  sgmf  15306  perfectlem2  15320  2lgslem1b  15414
  Copyright terms: Public domain W3C validator