ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 GIF version

Theorem rgen2 2563
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1 ((𝑥𝐴𝑦𝐵) → 𝜑)
Assertion
Ref Expression
rgen2 𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝜑)
21ralrimiva 2550 . 2 (𝑥𝐴 → ∀𝑦𝐵 𝜑)
32rgen 2530 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460
This theorem is referenced by:  rgen3  2564  f1stres  6160  f2ndres  6161  exmidonfinlem  7192  netap  7253  2onetap  7254  2omotaplemap  7256  aptap  8607  divfnzn  9621  1arith  12365  xpsff1o  12768  mgmidmo  12791  nmznsg  13073  isabli  13103  cnsubmlem  13475  cnsubrglem  13477  txuni2  13759  divcnap  14058  abscncf  14075  recncf  14076  imcncf  14077  cjcncf  14078  reefiso  14201  ioocosf1o  14278
  Copyright terms: Public domain W3C validator