| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2578 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 2558 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 |
| This theorem is referenced by: rgen3 2592 f1stres 6235 f2ndres 6236 exmidonfinlem 7283 netap 7348 2onetap 7349 2omotaplemap 7351 mpomulf 8044 aptap 8705 divfnzn 9724 1arith 12609 xpsff1o 13099 mgmidmo 13122 nmznsg 13467 isabli 13554 rhmfn 13852 cnsubmlem 14258 cnsubrglem 14260 txuni2 14646 divcnap 14955 abscncf 14975 recncf 14976 imcncf 14977 cjcncf 14978 reefiso 15167 ioocosf1o 15244 sgmf 15376 perfectlem2 15390 2lgslem1b 15484 |
| Copyright terms: Public domain | W3C validator |