| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2570 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 2550 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: rgen3 2584 f1stres 6226 f2ndres 6227 exmidonfinlem 7272 netap 7337 2onetap 7338 2omotaplemap 7340 mpomulf 8033 aptap 8694 divfnzn 9712 1arith 12561 xpsff1o 13051 mgmidmo 13074 nmznsg 13419 isabli 13506 rhmfn 13804 cnsubmlem 14210 cnsubrglem 14212 txuni2 14576 divcnap 14885 abscncf 14905 recncf 14906 imcncf 14907 cjcncf 14908 reefiso 15097 ioocosf1o 15174 sgmf 15306 perfectlem2 15320 2lgslem1b 15414 |
| Copyright terms: Public domain | W3C validator |