| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2603 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 2583 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: rgen3 2617 invdisjrab 4076 f1stres 6303 f2ndres 6304 exmidonfinlem 7367 netap 7436 2onetap 7437 2omotaplemap 7439 mpomulf 8132 aptap 8793 divfnzn 9812 fnpfx 11204 wrd2ind 11250 1arith 12885 xpsff1o 13377 mgmidmo 13400 nmznsg 13745 isabli 13832 rhmfn 14130 cnsubmlem 14536 cnsubrglem 14538 txuni2 14924 divcnap 15233 abscncf 15253 recncf 15254 imcncf 15255 cjcncf 15256 reefiso 15445 ioocosf1o 15522 sgmf 15654 perfectlem2 15668 2lgslem1b 15762 |
| Copyright terms: Public domain | W3C validator |