ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 GIF version

Theorem rgen2 2583
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1 ((𝑥𝐴𝑦𝐵) → 𝜑)
Assertion
Ref Expression
rgen2 𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝜑)
21ralrimiva 2570 . 2 (𝑥𝐴 → ∀𝑦𝐵 𝜑)
32rgen 2550 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  rgen3  2584  f1stres  6217  f2ndres  6218  exmidonfinlem  7260  netap  7321  2onetap  7322  2omotaplemap  7324  mpomulf  8016  aptap  8677  divfnzn  9695  1arith  12536  xpsff1o  12992  mgmidmo  13015  nmznsg  13343  isabli  13430  rhmfn  13728  cnsubmlem  14134  cnsubrglem  14136  txuni2  14492  divcnap  14801  abscncf  14821  recncf  14822  imcncf  14823  cjcncf  14824  reefiso  15013  ioocosf1o  15090  sgmf  15222  perfectlem2  15236  2lgslem1b  15330
  Copyright terms: Public domain W3C validator