ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 GIF version

Theorem rgen2 2580
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1 ((𝑥𝐴𝑦𝐵) → 𝜑)
Assertion
Ref Expression
rgen2 𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝜑)
21ralrimiva 2567 . 2 (𝑥𝐴 → ∀𝑦𝐵 𝜑)
32rgen 2547 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477
This theorem is referenced by:  rgen3  2581  f1stres  6214  f2ndres  6215  exmidonfinlem  7255  netap  7316  2onetap  7317  2omotaplemap  7319  mpomulf  8011  aptap  8671  divfnzn  9689  1arith  12508  xpsff1o  12935  mgmidmo  12958  nmznsg  13286  isabli  13373  rhmfn  13671  cnsubmlem  14077  cnsubrglem  14079  txuni2  14435  divcnap  14744  abscncf  14764  recncf  14765  imcncf  14766  cjcncf  14767  reefiso  14953  ioocosf1o  15030  2lgslem1b  15246
  Copyright terms: Public domain W3C validator