| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2570 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 2550 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: rgen3 2584 f1stres 6226 f2ndres 6227 exmidonfinlem 7274 netap 7339 2onetap 7340 2omotaplemap 7342 mpomulf 8035 aptap 8696 divfnzn 9714 1arith 12563 xpsff1o 13053 mgmidmo 13076 nmznsg 13421 isabli 13508 rhmfn 13806 cnsubmlem 14212 cnsubrglem 14214 txuni2 14600 divcnap 14909 abscncf 14929 recncf 14930 imcncf 14931 cjcncf 14932 reefiso 15121 ioocosf1o 15198 sgmf 15330 perfectlem2 15344 2lgslem1b 15438 |
| Copyright terms: Public domain | W3C validator |