| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2578 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 2558 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 |
| This theorem is referenced by: rgen3 2592 f1stres 6244 f2ndres 6245 exmidonfinlem 7300 netap 7365 2onetap 7366 2omotaplemap 7368 mpomulf 8061 aptap 8722 divfnzn 9741 1arith 12632 xpsff1o 13123 mgmidmo 13146 nmznsg 13491 isabli 13578 rhmfn 13876 cnsubmlem 14282 cnsubrglem 14284 txuni2 14670 divcnap 14979 abscncf 14999 recncf 15000 imcncf 15001 cjcncf 15002 reefiso 15191 ioocosf1o 15268 sgmf 15400 perfectlem2 15414 2lgslem1b 15508 |
| Copyright terms: Public domain | W3C validator |