ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 GIF version

Theorem rgen2 2580
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1 ((𝑥𝐴𝑦𝐵) → 𝜑)
Assertion
Ref Expression
rgen2 𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝜑)
21ralrimiva 2567 . 2 (𝑥𝐴 → ∀𝑦𝐵 𝜑)
32rgen 2547 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477
This theorem is referenced by:  rgen3  2581  f1stres  6212  f2ndres  6213  exmidonfinlem  7253  netap  7314  2onetap  7315  2omotaplemap  7317  mpomulf  8009  aptap  8669  divfnzn  9686  1arith  12505  xpsff1o  12932  mgmidmo  12955  nmznsg  13283  isabli  13370  rhmfn  13668  cnsubmlem  14066  cnsubrglem  14068  txuni2  14424  divcnap  14723  abscncf  14740  recncf  14741  imcncf  14742  cjcncf  14743  reefiso  14912  ioocosf1o  14989
  Copyright terms: Public domain W3C validator