![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 2567 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 2547 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: rgen3 2581 f1stres 6214 f2ndres 6215 exmidonfinlem 7255 netap 7316 2onetap 7317 2omotaplemap 7319 mpomulf 8011 aptap 8671 divfnzn 9689 1arith 12508 xpsff1o 12935 mgmidmo 12958 nmznsg 13286 isabli 13373 rhmfn 13671 cnsubmlem 14077 cnsubrglem 14079 txuni2 14435 divcnap 14744 abscncf 14764 recncf 14765 imcncf 14766 cjcncf 14767 reefiso 14953 ioocosf1o 15030 2lgslem1b 15246 |
Copyright terms: Public domain | W3C validator |