![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 2567 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 2547 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: rgen3 2581 f1stres 6212 f2ndres 6213 exmidonfinlem 7253 netap 7314 2onetap 7315 2omotaplemap 7317 mpomulf 8009 aptap 8669 divfnzn 9686 1arith 12505 xpsff1o 12932 mgmidmo 12955 nmznsg 13283 isabli 13370 rhmfn 13668 cnsubmlem 14066 cnsubrglem 14068 txuni2 14424 divcnap 14723 abscncf 14740 recncf 14741 imcncf 14742 cjcncf 14743 reefiso 14912 ioocosf1o 14989 |
Copyright terms: Public domain | W3C validator |