| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 2580 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 2560 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 |
| This theorem is referenced by: rgen3 2594 invdisjrab 4045 f1stres 6258 f2ndres 6259 exmidonfinlem 7317 netap 7386 2onetap 7387 2omotaplemap 7389 mpomulf 8082 aptap 8743 divfnzn 9762 fnpfx 11153 wrd2ind 11199 1arith 12765 xpsff1o 13256 mgmidmo 13279 nmznsg 13624 isabli 13711 rhmfn 14009 cnsubmlem 14415 cnsubrglem 14417 txuni2 14803 divcnap 15112 abscncf 15132 recncf 15133 imcncf 15134 cjcncf 15135 reefiso 15324 ioocosf1o 15401 sgmf 15533 perfectlem2 15547 2lgslem1b 15641 |
| Copyright terms: Public domain | W3C validator |