ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isosolem GIF version

Theorem isosolem 5947
Description: Lemma for isoso 5948. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem isosolem
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 5945 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
2 df-3an 1004 . . . . . . 7 ((𝑎𝐴𝑏𝐴𝑐𝐴) ↔ ((𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴))
3 isof1o 5930 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 5571 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 ffvelcdm 5767 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
65ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑎𝐴 → (𝐻𝑎) ∈ 𝐵))
7 ffvelcdm 5767 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑏𝐴) → (𝐻𝑏) ∈ 𝐵)
87ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑏𝐴 → (𝐻𝑏) ∈ 𝐵))
9 ffvelcdm 5767 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑐𝐴) → (𝐻𝑐) ∈ 𝐵)
109ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑐𝐴 → (𝐻𝑐) ∈ 𝐵))
116, 8, 103anim123d 1353 . . . . . . . . . . 11 (𝐻:𝐴𝐵 → ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵)))
123, 4, 113syl 17 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵)))
1312imp 124 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵))
14 breq1 4085 . . . . . . . . . . 11 (𝑥 = (𝐻𝑎) → (𝑥𝑆𝑦 ↔ (𝐻𝑎)𝑆𝑦))
15 breq1 4085 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑎) → (𝑥𝑆𝑧 ↔ (𝐻𝑎)𝑆𝑧))
1615orbi1d 796 . . . . . . . . . . 11 (𝑥 = (𝐻𝑎) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦)))
1714, 16imbi12d 234 . . . . . . . . . 10 (𝑥 = (𝐻𝑎) → ((𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) ↔ ((𝐻𝑎)𝑆𝑦 → ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦))))
18 breq2 4086 . . . . . . . . . . 11 (𝑦 = (𝐻𝑏) → ((𝐻𝑎)𝑆𝑦 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
19 breq2 4086 . . . . . . . . . . . 12 (𝑦 = (𝐻𝑏) → (𝑧𝑆𝑦𝑧𝑆(𝐻𝑏)))
2019orbi2d 795 . . . . . . . . . . 11 (𝑦 = (𝐻𝑏) → (((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦) ↔ ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏))))
2118, 20imbi12d 234 . . . . . . . . . 10 (𝑦 = (𝐻𝑏) → (((𝐻𝑎)𝑆𝑦 → ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦)) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏)))))
22 breq2 4086 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑐) → ((𝐻𝑎)𝑆𝑧 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
23 breq1 4085 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑐) → (𝑧𝑆(𝐻𝑏) ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
2422, 23orbi12d 798 . . . . . . . . . . 11 (𝑧 = (𝐻𝑐) → (((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏)) ↔ ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏))))
2524imbi2d 230 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → (((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏))) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
2617, 21, 25rspc3v 2923 . . . . . . . . 9 (((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
2713, 26syl 14 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
28 isorel 5931 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
29283adantr3 1182 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
30 isorel 5931 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑐𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
31303adantr2 1181 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
32 isorel 5931 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑏𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
3332ancom2s 566 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑏𝐴𝑐𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
34333adantr1 1180 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
3531, 34orbi12d 798 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝑎𝑅𝑐𝑐𝑅𝑏) ↔ ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏))))
3629, 35imbi12d 234 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
3727, 36sylibrd 169 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
382, 37sylan2br 288 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ((𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
3938anassrs 400 . . . . 5 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑐𝐴) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4039ralrimdva 2610 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ∀𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4140ralrimdvva 2615 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
421, 41anim12d 335 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))) → (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)))))
43 df-iso 4387 . 2 (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
44 df-iso 4387 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4542, 43, 443imtr4g 205 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4082   Po wpo 4384   Or wor 4385  wf 5313  1-1-ontowf1o 5316  cfv 5317   Isom wiso 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-f1o 5324  df-fv 5325  df-isom 5326
This theorem is referenced by:  isoso  5948
  Copyright terms: Public domain W3C validator