ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isosolem GIF version

Theorem isosolem 5677
Description: Lemma for isoso 5678. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem isosolem
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 5675 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
2 df-3an 945 . . . . . . 7 ((𝑎𝐴𝑏𝐴𝑐𝐴) ↔ ((𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴))
3 isof1o 5660 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 5321 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 ffvelrn 5505 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
65ex 114 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑎𝐴 → (𝐻𝑎) ∈ 𝐵))
7 ffvelrn 5505 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑏𝐴) → (𝐻𝑏) ∈ 𝐵)
87ex 114 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑏𝐴 → (𝐻𝑏) ∈ 𝐵))
9 ffvelrn 5505 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑐𝐴) → (𝐻𝑐) ∈ 𝐵)
109ex 114 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑐𝐴 → (𝐻𝑐) ∈ 𝐵))
116, 8, 103anim123d 1278 . . . . . . . . . . 11 (𝐻:𝐴𝐵 → ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵)))
123, 4, 113syl 17 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵)))
1312imp 123 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵))
14 breq1 3896 . . . . . . . . . . 11 (𝑥 = (𝐻𝑎) → (𝑥𝑆𝑦 ↔ (𝐻𝑎)𝑆𝑦))
15 breq1 3896 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑎) → (𝑥𝑆𝑧 ↔ (𝐻𝑎)𝑆𝑧))
1615orbi1d 763 . . . . . . . . . . 11 (𝑥 = (𝐻𝑎) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦)))
1714, 16imbi12d 233 . . . . . . . . . 10 (𝑥 = (𝐻𝑎) → ((𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) ↔ ((𝐻𝑎)𝑆𝑦 → ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦))))
18 breq2 3897 . . . . . . . . . . 11 (𝑦 = (𝐻𝑏) → ((𝐻𝑎)𝑆𝑦 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
19 breq2 3897 . . . . . . . . . . . 12 (𝑦 = (𝐻𝑏) → (𝑧𝑆𝑦𝑧𝑆(𝐻𝑏)))
2019orbi2d 762 . . . . . . . . . . 11 (𝑦 = (𝐻𝑏) → (((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦) ↔ ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏))))
2118, 20imbi12d 233 . . . . . . . . . 10 (𝑦 = (𝐻𝑏) → (((𝐻𝑎)𝑆𝑦 → ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦)) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏)))))
22 breq2 3897 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑐) → ((𝐻𝑎)𝑆𝑧 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
23 breq1 3896 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑐) → (𝑧𝑆(𝐻𝑏) ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
2422, 23orbi12d 765 . . . . . . . . . . 11 (𝑧 = (𝐻𝑐) → (((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏)) ↔ ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏))))
2524imbi2d 229 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → (((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏))) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
2617, 21, 25rspc3v 2773 . . . . . . . . 9 (((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
2713, 26syl 14 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
28 isorel 5661 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
29283adantr3 1123 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
30 isorel 5661 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑐𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
31303adantr2 1122 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
32 isorel 5661 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑏𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
3332ancom2s 538 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑏𝐴𝑐𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
34333adantr1 1121 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
3531, 34orbi12d 765 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝑎𝑅𝑐𝑐𝑅𝑏) ↔ ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏))))
3629, 35imbi12d 233 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
3727, 36sylibrd 168 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
382, 37sylan2br 284 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ((𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
3938anassrs 395 . . . . 5 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑐𝐴) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4039ralrimdva 2484 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ∀𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4140ralrimdvva 2489 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
421, 41anim12d 331 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))) → (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)))))
43 df-iso 4177 . 2 (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
44 df-iso 4177 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4542, 43, 443imtr4g 204 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 680  w3a 943   = wceq 1312  wcel 1461  wral 2388   class class class wbr 3893   Po wpo 4174   Or wor 4175  wf 5075  1-1-ontowf1o 5078  cfv 5079   Isom wiso 5080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-f1o 5086  df-fv 5087  df-isom 5088
This theorem is referenced by:  isoso  5678
  Copyright terms: Public domain W3C validator