Step | Hyp | Ref
| Expression |
1 | | isopolem 5767 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) |
2 | | df-3an 965 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴)) |
3 | | isof1o 5752 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
4 | | f1of 5411 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
5 | | ffvelrn 5597 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑎 ∈ 𝐴) → (𝐻‘𝑎) ∈ 𝐵) |
6 | 5 | ex 114 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴⟶𝐵 → (𝑎 ∈ 𝐴 → (𝐻‘𝑎) ∈ 𝐵)) |
7 | | ffvelrn 5597 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑏 ∈ 𝐴) → (𝐻‘𝑏) ∈ 𝐵) |
8 | 7 | ex 114 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴⟶𝐵 → (𝑏 ∈ 𝐴 → (𝐻‘𝑏) ∈ 𝐵)) |
9 | | ffvelrn 5597 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑐 ∈ 𝐴) → (𝐻‘𝑐) ∈ 𝐵) |
10 | 9 | ex 114 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴⟶𝐵 → (𝑐 ∈ 𝐴 → (𝐻‘𝑐) ∈ 𝐵)) |
11 | 6, 8, 10 | 3anim123d 1301 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴⟶𝐵 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ((𝐻‘𝑎) ∈ 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑐) ∈ 𝐵))) |
12 | 3, 4, 11 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ((𝐻‘𝑎) ∈ 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑐) ∈ 𝐵))) |
13 | 12 | imp 123 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → ((𝐻‘𝑎) ∈ 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑐) ∈ 𝐵)) |
14 | | breq1 3968 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐻‘𝑎) → (𝑥𝑆𝑦 ↔ (𝐻‘𝑎)𝑆𝑦)) |
15 | | breq1 3968 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐻‘𝑎) → (𝑥𝑆𝑧 ↔ (𝐻‘𝑎)𝑆𝑧)) |
16 | 15 | orbi1d 781 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐻‘𝑎) → ((𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦) ↔ ((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆𝑦))) |
17 | 14, 16 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐻‘𝑎) → ((𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) ↔ ((𝐻‘𝑎)𝑆𝑦 → ((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆𝑦)))) |
18 | | breq2 3969 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐻‘𝑏) → ((𝐻‘𝑎)𝑆𝑦 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
19 | | breq2 3969 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐻‘𝑏) → (𝑧𝑆𝑦 ↔ 𝑧𝑆(𝐻‘𝑏))) |
20 | 19 | orbi2d 780 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐻‘𝑏) → (((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆𝑦) ↔ ((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆(𝐻‘𝑏)))) |
21 | 18, 20 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐻‘𝑏) → (((𝐻‘𝑎)𝑆𝑦 → ((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆𝑦)) ↔ ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆(𝐻‘𝑏))))) |
22 | | breq2 3969 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑐) → ((𝐻‘𝑎)𝑆𝑧 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑐))) |
23 | | breq1 3968 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑐) → (𝑧𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑏))) |
24 | 22, 23 | orbi12d 783 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻‘𝑐) → (((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆(𝐻‘𝑏)) ↔ ((𝐻‘𝑎)𝑆(𝐻‘𝑐) ∨ (𝐻‘𝑐)𝑆(𝐻‘𝑏)))) |
25 | 24 | imbi2d 229 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻‘𝑐) → (((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ((𝐻‘𝑎)𝑆𝑧 ∨ 𝑧𝑆(𝐻‘𝑏))) ↔ ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑐) ∨ (𝐻‘𝑐)𝑆(𝐻‘𝑏))))) |
26 | 17, 21, 25 | rspc3v 2832 |
. . . . . . . . 9
⊢ (((𝐻‘𝑎) ∈ 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑐) ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑐) ∨ (𝐻‘𝑐)𝑆(𝐻‘𝑏))))) |
27 | 13, 26 | syl 14 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑐) ∨ (𝐻‘𝑐)𝑆(𝐻‘𝑏))))) |
28 | | isorel 5753 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
29 | 28 | 3adantr3 1143 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
30 | | isorel 5753 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑐))) |
31 | 30 | 3adantr2 1142 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑐))) |
32 | | isorel 5753 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑏))) |
33 | 32 | ancom2s 556 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑏))) |
34 | 33 | 3adantr1 1141 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑏))) |
35 | 31, 34 | orbi12d 783 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → ((𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏) ↔ ((𝐻‘𝑎)𝑆(𝐻‘𝑐) ∨ (𝐻‘𝑐)𝑆(𝐻‘𝑏)))) |
36 | 29, 35 | imbi12d 233 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → ((𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)) ↔ ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑐) ∨ (𝐻‘𝑐)𝑆(𝐻‘𝑏))))) |
37 | 27, 36 | sylibrd 168 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) |
38 | 2, 37 | sylan2br 286 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) |
39 | 38 | anassrs 398 |
. . . . 5
⊢ (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) ∧ 𝑐 ∈ 𝐴) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) |
40 | 39 | ralrimdva 2537 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) |
41 | 40 | ralrimdvva 2542 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) |
42 | 1, 41 | anim12d 333 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦))) → (𝑅 Po 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏))))) |
43 | | df-iso 4256 |
. 2
⊢ (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) |
44 | | df-iso 4256 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐 ∨ 𝑐𝑅𝑏)))) |
45 | 42, 43, 44 | 3imtr4g 204 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |