ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isosolem GIF version

Theorem isosolem 5867
Description: Lemma for isoso 5868. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem isosolem
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 5865 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
2 df-3an 982 . . . . . . 7 ((𝑎𝐴𝑏𝐴𝑐𝐴) ↔ ((𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴))
3 isof1o 5850 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 5500 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 ffvelcdm 5691 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑎𝐴) → (𝐻𝑎) ∈ 𝐵)
65ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑎𝐴 → (𝐻𝑎) ∈ 𝐵))
7 ffvelcdm 5691 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑏𝐴) → (𝐻𝑏) ∈ 𝐵)
87ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑏𝐴 → (𝐻𝑏) ∈ 𝐵))
9 ffvelcdm 5691 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑐𝐴) → (𝐻𝑐) ∈ 𝐵)
109ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑐𝐴 → (𝐻𝑐) ∈ 𝐵))
116, 8, 103anim123d 1330 . . . . . . . . . . 11 (𝐻:𝐴𝐵 → ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵)))
123, 4, 113syl 17 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵)))
1312imp 124 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵))
14 breq1 4032 . . . . . . . . . . 11 (𝑥 = (𝐻𝑎) → (𝑥𝑆𝑦 ↔ (𝐻𝑎)𝑆𝑦))
15 breq1 4032 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑎) → (𝑥𝑆𝑧 ↔ (𝐻𝑎)𝑆𝑧))
1615orbi1d 792 . . . . . . . . . . 11 (𝑥 = (𝐻𝑎) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦)))
1714, 16imbi12d 234 . . . . . . . . . 10 (𝑥 = (𝐻𝑎) → ((𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) ↔ ((𝐻𝑎)𝑆𝑦 → ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦))))
18 breq2 4033 . . . . . . . . . . 11 (𝑦 = (𝐻𝑏) → ((𝐻𝑎)𝑆𝑦 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
19 breq2 4033 . . . . . . . . . . . 12 (𝑦 = (𝐻𝑏) → (𝑧𝑆𝑦𝑧𝑆(𝐻𝑏)))
2019orbi2d 791 . . . . . . . . . . 11 (𝑦 = (𝐻𝑏) → (((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦) ↔ ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏))))
2118, 20imbi12d 234 . . . . . . . . . 10 (𝑦 = (𝐻𝑏) → (((𝐻𝑎)𝑆𝑦 → ((𝐻𝑎)𝑆𝑧𝑧𝑆𝑦)) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏)))))
22 breq2 4033 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑐) → ((𝐻𝑎)𝑆𝑧 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
23 breq1 4032 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑐) → (𝑧𝑆(𝐻𝑏) ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
2422, 23orbi12d 794 . . . . . . . . . . 11 (𝑧 = (𝐻𝑐) → (((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏)) ↔ ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏))))
2524imbi2d 230 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → (((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆𝑧𝑧𝑆(𝐻𝑏))) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
2617, 21, 25rspc3v 2880 . . . . . . . . 9 (((𝐻𝑎) ∈ 𝐵 ∧ (𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑐) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
2713, 26syl 14 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
28 isorel 5851 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
29283adantr3 1160 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
30 isorel 5851 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑐𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
31303adantr2 1159 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑅𝑐 ↔ (𝐻𝑎)𝑆(𝐻𝑐)))
32 isorel 5851 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑏𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
3332ancom2s 566 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑏𝐴𝑐𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
34333adantr1 1158 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑐𝑅𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑏)))
3531, 34orbi12d 794 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝑎𝑅𝑐𝑐𝑅𝑏) ↔ ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏))))
3629, 35imbi12d 234 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → ((𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)) ↔ ((𝐻𝑎)𝑆(𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑐) ∨ (𝐻𝑐)𝑆(𝐻𝑏)))))
3727, 36sylibrd 169 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
382, 37sylan2br 288 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ((𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
3938anassrs 400 . . . . 5 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑐𝐴) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4039ralrimdva 2574 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ∀𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4140ralrimdvva 2579 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)) → ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
421, 41anim12d 335 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))) → (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏)))))
43 df-iso 4328 . 2 (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
44 df-iso 4328 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎𝑅𝑏 → (𝑎𝑅𝑐𝑐𝑅𝑏))))
4542, 43, 443imtr4g 205 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029   Po wpo 4325   Or wor 4326  wf 5250  1-1-ontowf1o 5253  cfv 5254   Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by:  isoso  5868
  Copyright terms: Public domain W3C validator