ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isotilem GIF version

Theorem isotilem 7107
Description: Lemma for isoti 7108. (Contributed by Jim Kingdon, 26-Nov-2021.)
Assertion
Ref Expression
isotilem (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣,𝑥,𝑦   𝑢,𝐹,𝑣,𝑥,𝑦   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem isotilem
StepHypRef Expression
1 isof1o 5875 . . . . . 6 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1of 5521 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
3 ffvelcdm 5712 . . . . . . . 8 ((𝐹:𝐴𝐵𝑢𝐴) → (𝐹𝑢) ∈ 𝐵)
43ex 115 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑢𝐴 → (𝐹𝑢) ∈ 𝐵))
5 ffvelcdm 5712 . . . . . . . 8 ((𝐹:𝐴𝐵𝑣𝐴) → (𝐹𝑣) ∈ 𝐵)
65ex 115 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑣𝐴 → (𝐹𝑣) ∈ 𝐵))
74, 6anim12d 335 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑢𝐴𝑣𝐴) → ((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵)))
81, 2, 73syl 17 . . . . 5 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑢𝐴𝑣𝐴) → ((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵)))
98imp 124 . . . 4 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵))
10 eqeq1 2211 . . . . . 6 (𝑥 = (𝐹𝑢) → (𝑥 = 𝑦 ↔ (𝐹𝑢) = 𝑦))
11 breq1 4046 . . . . . . . 8 (𝑥 = (𝐹𝑢) → (𝑥𝑆𝑦 ↔ (𝐹𝑢)𝑆𝑦))
1211notbid 668 . . . . . . 7 (𝑥 = (𝐹𝑢) → (¬ 𝑥𝑆𝑦 ↔ ¬ (𝐹𝑢)𝑆𝑦))
13 breq2 4047 . . . . . . . 8 (𝑥 = (𝐹𝑢) → (𝑦𝑆𝑥𝑦𝑆(𝐹𝑢)))
1413notbid 668 . . . . . . 7 (𝑥 = (𝐹𝑢) → (¬ 𝑦𝑆𝑥 ↔ ¬ 𝑦𝑆(𝐹𝑢)))
1512, 14anbi12d 473 . . . . . 6 (𝑥 = (𝐹𝑢) → ((¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥) ↔ (¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢))))
1610, 15bibi12d 235 . . . . 5 (𝑥 = (𝐹𝑢) → ((𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ ((𝐹𝑢) = 𝑦 ↔ (¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢)))))
17 eqeq2 2214 . . . . . 6 (𝑦 = (𝐹𝑣) → ((𝐹𝑢) = 𝑦 ↔ (𝐹𝑢) = (𝐹𝑣)))
18 breq2 4047 . . . . . . . 8 (𝑦 = (𝐹𝑣) → ((𝐹𝑢)𝑆𝑦 ↔ (𝐹𝑢)𝑆(𝐹𝑣)))
1918notbid 668 . . . . . . 7 (𝑦 = (𝐹𝑣) → (¬ (𝐹𝑢)𝑆𝑦 ↔ ¬ (𝐹𝑢)𝑆(𝐹𝑣)))
20 breq1 4046 . . . . . . . 8 (𝑦 = (𝐹𝑣) → (𝑦𝑆(𝐹𝑢) ↔ (𝐹𝑣)𝑆(𝐹𝑢)))
2120notbid 668 . . . . . . 7 (𝑦 = (𝐹𝑣) → (¬ 𝑦𝑆(𝐹𝑢) ↔ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))
2219, 21anbi12d 473 . . . . . 6 (𝑦 = (𝐹𝑣) → ((¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢)) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢))))
2317, 22bibi12d 235 . . . . 5 (𝑦 = (𝐹𝑣) → (((𝐹𝑢) = 𝑦 ↔ (¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢))) ↔ ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
2416, 23rspc2v 2889 . . . 4 (((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
259, 24syl 14 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
26 f1of1 5520 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
271, 26syl 14 . . . . . 6 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1𝐵)
28 f1fveq 5840 . . . . . 6 ((𝐹:𝐴1-1𝐵 ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
2927, 28sylan 283 . . . . 5 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
3029bicomd 141 . . . 4 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (𝐹𝑢) = (𝐹𝑣)))
31 isorel 5876 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑅𝑣 ↔ (𝐹𝑢)𝑆(𝐹𝑣)))
3231notbid 668 . . . . 5 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢𝑅𝑣 ↔ ¬ (𝐹𝑢)𝑆(𝐹𝑣)))
33 isorel 5876 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑣𝐴𝑢𝐴)) → (𝑣𝑅𝑢 ↔ (𝐹𝑣)𝑆(𝐹𝑢)))
3433notbid 668 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑣𝐴𝑢𝐴)) → (¬ 𝑣𝑅𝑢 ↔ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))
3534ancom2s 566 . . . . 5 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑣𝑅𝑢 ↔ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))
3632, 35anbi12d 473 . . . 4 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢))))
3730, 36bibi12d 235 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
3825, 37sylibrd 169 . 2 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
3938ralrimdvva 2590 1 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483   class class class wbr 4043  wf 5266  1-1wf1 5267  1-1-ontowf1o 5269  cfv 5270   Isom wiso 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-f1o 5277  df-fv 5278  df-isom 5279
This theorem is referenced by:  isoti  7108
  Copyright terms: Public domain W3C validator