ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isotilem GIF version

Theorem isotilem 6999
Description: Lemma for isoti 7000. (Contributed by Jim Kingdon, 26-Nov-2021.)
Assertion
Ref Expression
isotilem (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣,𝑥,𝑦   𝑢,𝐹,𝑣,𝑥,𝑦   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem isotilem
StepHypRef Expression
1 isof1o 5802 . . . . . 6 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1of 5457 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
3 ffvelcdm 5645 . . . . . . . 8 ((𝐹:𝐴𝐵𝑢𝐴) → (𝐹𝑢) ∈ 𝐵)
43ex 115 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑢𝐴 → (𝐹𝑢) ∈ 𝐵))
5 ffvelcdm 5645 . . . . . . . 8 ((𝐹:𝐴𝐵𝑣𝐴) → (𝐹𝑣) ∈ 𝐵)
65ex 115 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑣𝐴 → (𝐹𝑣) ∈ 𝐵))
74, 6anim12d 335 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑢𝐴𝑣𝐴) → ((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵)))
81, 2, 73syl 17 . . . . 5 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑢𝐴𝑣𝐴) → ((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵)))
98imp 124 . . . 4 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵))
10 eqeq1 2184 . . . . . 6 (𝑥 = (𝐹𝑢) → (𝑥 = 𝑦 ↔ (𝐹𝑢) = 𝑦))
11 breq1 4003 . . . . . . . 8 (𝑥 = (𝐹𝑢) → (𝑥𝑆𝑦 ↔ (𝐹𝑢)𝑆𝑦))
1211notbid 667 . . . . . . 7 (𝑥 = (𝐹𝑢) → (¬ 𝑥𝑆𝑦 ↔ ¬ (𝐹𝑢)𝑆𝑦))
13 breq2 4004 . . . . . . . 8 (𝑥 = (𝐹𝑢) → (𝑦𝑆𝑥𝑦𝑆(𝐹𝑢)))
1413notbid 667 . . . . . . 7 (𝑥 = (𝐹𝑢) → (¬ 𝑦𝑆𝑥 ↔ ¬ 𝑦𝑆(𝐹𝑢)))
1512, 14anbi12d 473 . . . . . 6 (𝑥 = (𝐹𝑢) → ((¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥) ↔ (¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢))))
1610, 15bibi12d 235 . . . . 5 (𝑥 = (𝐹𝑢) → ((𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ ((𝐹𝑢) = 𝑦 ↔ (¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢)))))
17 eqeq2 2187 . . . . . 6 (𝑦 = (𝐹𝑣) → ((𝐹𝑢) = 𝑦 ↔ (𝐹𝑢) = (𝐹𝑣)))
18 breq2 4004 . . . . . . . 8 (𝑦 = (𝐹𝑣) → ((𝐹𝑢)𝑆𝑦 ↔ (𝐹𝑢)𝑆(𝐹𝑣)))
1918notbid 667 . . . . . . 7 (𝑦 = (𝐹𝑣) → (¬ (𝐹𝑢)𝑆𝑦 ↔ ¬ (𝐹𝑢)𝑆(𝐹𝑣)))
20 breq1 4003 . . . . . . . 8 (𝑦 = (𝐹𝑣) → (𝑦𝑆(𝐹𝑢) ↔ (𝐹𝑣)𝑆(𝐹𝑢)))
2120notbid 667 . . . . . . 7 (𝑦 = (𝐹𝑣) → (¬ 𝑦𝑆(𝐹𝑢) ↔ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))
2219, 21anbi12d 473 . . . . . 6 (𝑦 = (𝐹𝑣) → ((¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢)) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢))))
2317, 22bibi12d 235 . . . . 5 (𝑦 = (𝐹𝑣) → (((𝐹𝑢) = 𝑦 ↔ (¬ (𝐹𝑢)𝑆𝑦 ∧ ¬ 𝑦𝑆(𝐹𝑢))) ↔ ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
2416, 23rspc2v 2854 . . . 4 (((𝐹𝑢) ∈ 𝐵 ∧ (𝐹𝑣) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
259, 24syl 14 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
26 f1of1 5456 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
271, 26syl 14 . . . . . 6 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1𝐵)
28 f1fveq 5767 . . . . . 6 ((𝐹:𝐴1-1𝐵 ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
2927, 28sylan 283 . . . . 5 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
3029bicomd 141 . . . 4 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (𝐹𝑢) = (𝐹𝑣)))
31 isorel 5803 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑅𝑣 ↔ (𝐹𝑢)𝑆(𝐹𝑣)))
3231notbid 667 . . . . 5 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢𝑅𝑣 ↔ ¬ (𝐹𝑢)𝑆(𝐹𝑣)))
33 isorel 5803 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑣𝐴𝑢𝐴)) → (𝑣𝑅𝑢 ↔ (𝐹𝑣)𝑆(𝐹𝑢)))
3433notbid 667 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑣𝐴𝑢𝐴)) → (¬ 𝑣𝑅𝑢 ↔ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))
3534ancom2s 566 . . . . 5 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑣𝑅𝑢 ↔ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))
3632, 35anbi12d 473 . . . 4 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢))))
3730, 36bibi12d 235 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → ((𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ((𝐹𝑢) = (𝐹𝑣) ↔ (¬ (𝐹𝑢)𝑆(𝐹𝑣) ∧ ¬ (𝐹𝑣)𝑆(𝐹𝑢)))))
3825, 37sylibrd 169 . 2 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑢𝐴𝑣𝐴)) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
3938ralrimdvva 2562 1 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4000  wf 5208  1-1wf1 5209  1-1-ontowf1o 5211  cfv 5212   Isom wiso 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-f1o 5219  df-fv 5220  df-isom 5221
This theorem is referenced by:  isoti  7000
  Copyright terms: Public domain W3C validator