![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemcl | GIF version |
Description: Lemma for caucvgsr 7864. Terms of the sequence from caucvgsrlemgt1 7857 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemcl.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsrlemcl.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemcl | ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemcl.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | 1 | ffvelcdmda 5694 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (𝐹‘𝐴) ∈ R) |
3 | 0lt1sr 7827 | . . . . 5 ⊢ 0R <R 1R | |
4 | caucvgsrlemcl.gt1 | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
5 | fveq2 5555 | . . . . . . . 8 ⊢ (𝑚 = 𝐴 → (𝐹‘𝑚) = (𝐹‘𝐴)) | |
6 | 5 | breq2d 4042 | . . . . . . 7 ⊢ (𝑚 = 𝐴 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝐴))) |
7 | 6 | rspcv 2861 | . . . . . 6 ⊢ (𝐴 ∈ N → (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) → 1R <R (𝐹‘𝐴))) |
8 | 4, 7 | mpan9 281 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 1R <R (𝐹‘𝐴)) |
9 | ltsosr 7826 | . . . . . 6 ⊢ <R Or R | |
10 | ltrelsr 7800 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
11 | 9, 10 | sotri 5062 | . . . . 5 ⊢ ((0R <R 1R ∧ 1R <R (𝐹‘𝐴)) → 0R <R (𝐹‘𝐴)) |
12 | 3, 8, 11 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 0R <R (𝐹‘𝐴)) |
13 | srpospr 7845 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ R ∧ 0R <R (𝐹‘𝐴)) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | |
14 | 2, 12, 13 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) |
15 | eqcom 2195 | . . . 4 ⊢ ([〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) | |
16 | 15 | reubii 2680 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
17 | 14, 16 | sylib 122 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | riotacl 5889 | . 2 ⊢ (∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | |
19 | 17, 18 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃!wreu 2474 〈cop 3622 class class class wbr 4030 ⟶wf 5251 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 [cec 6587 Ncnpi 7334 Pcnp 7353 1Pc1p 7354 +P cpp 7355 ~R cer 7358 Rcnr 7359 0Rc0r 7360 1Rc1r 7361 <R cltr 7365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-iltp 7532 df-enr 7788 df-nr 7789 df-ltr 7792 df-0r 7793 df-1r 7794 |
This theorem is referenced by: caucvgsrlemfv 7853 caucvgsrlemf 7854 |
Copyright terms: Public domain | W3C validator |