![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemcl | GIF version |
Description: Lemma for caucvgsr 7815. Terms of the sequence from caucvgsrlemgt1 7808 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemcl.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsrlemcl.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemcl | ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemcl.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | 1 | ffvelcdmda 5664 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (𝐹‘𝐴) ∈ R) |
3 | 0lt1sr 7778 | . . . . 5 ⊢ 0R <R 1R | |
4 | caucvgsrlemcl.gt1 | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
5 | fveq2 5527 | . . . . . . . 8 ⊢ (𝑚 = 𝐴 → (𝐹‘𝑚) = (𝐹‘𝐴)) | |
6 | 5 | breq2d 4027 | . . . . . . 7 ⊢ (𝑚 = 𝐴 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝐴))) |
7 | 6 | rspcv 2849 | . . . . . 6 ⊢ (𝐴 ∈ N → (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) → 1R <R (𝐹‘𝐴))) |
8 | 4, 7 | mpan9 281 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 1R <R (𝐹‘𝐴)) |
9 | ltsosr 7777 | . . . . . 6 ⊢ <R Or R | |
10 | ltrelsr 7751 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
11 | 9, 10 | sotri 5036 | . . . . 5 ⊢ ((0R <R 1R ∧ 1R <R (𝐹‘𝐴)) → 0R <R (𝐹‘𝐴)) |
12 | 3, 8, 11 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 0R <R (𝐹‘𝐴)) |
13 | srpospr 7796 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ R ∧ 0R <R (𝐹‘𝐴)) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | |
14 | 2, 12, 13 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) |
15 | eqcom 2189 | . . . 4 ⊢ ([〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) | |
16 | 15 | reubii 2673 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
17 | 14, 16 | sylib 122 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | riotacl 5858 | . 2 ⊢ (∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | |
19 | 17, 18 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ∃!wreu 2467 〈cop 3607 class class class wbr 4015 ⟶wf 5224 ‘cfv 5228 ℩crio 5843 (class class class)co 5888 [cec 6547 Ncnpi 7285 Pcnp 7304 1Pc1p 7305 +P cpp 7306 ~R cer 7309 Rcnr 7310 0Rc0r 7311 1Rc1r 7312 <R cltr 7316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-eprel 4301 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-1o 6431 df-2o 6432 df-oadd 6435 df-omul 6436 df-er 6549 df-ec 6551 df-qs 6555 df-ni 7317 df-pli 7318 df-mi 7319 df-lti 7320 df-plpq 7357 df-mpq 7358 df-enq 7360 df-nqqs 7361 df-plqqs 7362 df-mqqs 7363 df-1nqqs 7364 df-rq 7365 df-ltnqqs 7366 df-enq0 7437 df-nq0 7438 df-0nq0 7439 df-plq0 7440 df-mq0 7441 df-inp 7479 df-i1p 7480 df-iplp 7481 df-iltp 7483 df-enr 7739 df-nr 7740 df-ltr 7743 df-0r 7744 df-1r 7745 |
This theorem is referenced by: caucvgsrlemfv 7804 caucvgsrlemf 7805 |
Copyright terms: Public domain | W3C validator |