Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlemcl | GIF version |
Description: Lemma for caucvgsr 7743. Terms of the sequence from caucvgsrlemgt1 7736 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemcl.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsrlemcl.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemcl | ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemcl.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | 1 | ffvelrnda 5620 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (𝐹‘𝐴) ∈ R) |
3 | 0lt1sr 7706 | . . . . 5 ⊢ 0R <R 1R | |
4 | caucvgsrlemcl.gt1 | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
5 | fveq2 5486 | . . . . . . . 8 ⊢ (𝑚 = 𝐴 → (𝐹‘𝑚) = (𝐹‘𝐴)) | |
6 | 5 | breq2d 3994 | . . . . . . 7 ⊢ (𝑚 = 𝐴 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝐴))) |
7 | 6 | rspcv 2826 | . . . . . 6 ⊢ (𝐴 ∈ N → (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) → 1R <R (𝐹‘𝐴))) |
8 | 4, 7 | mpan9 279 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 1R <R (𝐹‘𝐴)) |
9 | ltsosr 7705 | . . . . . 6 ⊢ <R Or R | |
10 | ltrelsr 7679 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
11 | 9, 10 | sotri 4999 | . . . . 5 ⊢ ((0R <R 1R ∧ 1R <R (𝐹‘𝐴)) → 0R <R (𝐹‘𝐴)) |
12 | 3, 8, 11 | sylancr 411 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 0R <R (𝐹‘𝐴)) |
13 | srpospr 7724 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ R ∧ 0R <R (𝐹‘𝐴)) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | |
14 | 2, 12, 13 | syl2anc 409 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) |
15 | eqcom 2167 | . . . 4 ⊢ ([〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) | |
16 | 15 | reubii 2651 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
17 | 14, 16 | sylib 121 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | riotacl 5812 | . 2 ⊢ (∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | |
19 | 17, 18 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃!wreu 2446 〈cop 3579 class class class wbr 3982 ⟶wf 5184 ‘cfv 5188 ℩crio 5797 (class class class)co 5842 [cec 6499 Ncnpi 7213 Pcnp 7232 1Pc1p 7233 +P cpp 7234 ~R cer 7237 Rcnr 7238 0Rc0r 7239 1Rc1r 7240 <R cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-ltr 7671 df-0r 7672 df-1r 7673 |
This theorem is referenced by: caucvgsrlemfv 7732 caucvgsrlemf 7733 |
Copyright terms: Public domain | W3C validator |