ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcl GIF version

Theorem caucvgsrlemcl 7851
Description: Lemma for caucvgsr 7864. Terms of the sequence from caucvgsrlemgt1 7857 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
Hypotheses
Ref Expression
caucvgsrlemcl.f (𝜑𝐹:NR)
caucvgsrlemcl.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemcl ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
Distinct variable groups:   𝐴,𝑚   𝑦,𝐴   𝑚,𝐹   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑚)

Proof of Theorem caucvgsrlemcl
StepHypRef Expression
1 caucvgsrlemcl.f . . . . 5 (𝜑𝐹:NR)
21ffvelcdmda 5694 . . . 4 ((𝜑𝐴N) → (𝐹𝐴) ∈ R)
3 0lt1sr 7827 . . . . 5 0R <R 1R
4 caucvgsrlemcl.gt1 . . . . . 6 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
5 fveq2 5555 . . . . . . . 8 (𝑚 = 𝐴 → (𝐹𝑚) = (𝐹𝐴))
65breq2d 4042 . . . . . . 7 (𝑚 = 𝐴 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝐴)))
76rspcv 2861 . . . . . 6 (𝐴N → (∀𝑚N 1R <R (𝐹𝑚) → 1R <R (𝐹𝐴)))
84, 7mpan9 281 . . . . 5 ((𝜑𝐴N) → 1R <R (𝐹𝐴))
9 ltsosr 7826 . . . . . 6 <R Or R
10 ltrelsr 7800 . . . . . 6 <R ⊆ (R × R)
119, 10sotri 5062 . . . . 5 ((0R <R 1R ∧ 1R <R (𝐹𝐴)) → 0R <R (𝐹𝐴))
123, 8, 11sylancr 414 . . . 4 ((𝜑𝐴N) → 0R <R (𝐹𝐴))
13 srpospr 7845 . . . 4 (((𝐹𝐴) ∈ R ∧ 0R <R (𝐹𝐴)) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
142, 12, 13syl2anc 411 . . 3 ((𝜑𝐴N) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
15 eqcom 2195 . . . 4 ([⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴) ↔ (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1615reubii 2680 . . 3 (∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴) ↔ ∃!𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1714, 16sylib 122 . 2 ((𝜑𝐴N) → ∃!𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R )
18 riotacl 5889 . 2 (∃!𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
1917, 18syl 14 1 ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  ∃!wreu 2474  cop 3622   class class class wbr 4030  wf 5251  cfv 5255  crio 5873  (class class class)co 5919  [cec 6587  Ncnpi 7334  Pcnp 7353  1Pc1p 7354   +P cpp 7355   ~R cer 7358  Rcnr 7359  0Rc0r 7360  1Rc1r 7361   <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-ltr 7792  df-0r 7793  df-1r 7794
This theorem is referenced by:  caucvgsrlemfv  7853  caucvgsrlemf  7854
  Copyright terms: Public domain W3C validator