![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmobida | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobida.1 | ⊢ Ⅎ𝑥𝜑 |
rmobida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rmobida | ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rmobida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.32da 441 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | 1, 3 | mobid 1984 | . 2 ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
5 | df-rmo 2368 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
6 | df-rmo 2368 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜒 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 Ⅎwnf 1395 ∈ wcel 1439 ∃*wmo 1950 ∃*wrmo 2363 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-eu 1952 df-mo 1953 df-rmo 2368 |
This theorem is referenced by: rmobidva 2555 |
Copyright terms: Public domain | W3C validator |