| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexalim | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| rexalim | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 2493 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜑) |
| 3 | 2 | con2i 628 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 2483 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie2 1516 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: infnlbti 7110 |
| Copyright terms: Public domain | W3C validator |