ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexalim GIF version

Theorem rexalim 2480
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexalim (∃𝑥𝐴 𝜑 → ¬ ∀𝑥𝐴 ¬ 𝜑)

Proof of Theorem rexalim
StepHypRef Expression
1 ralnex 2475 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
21biimpi 120 . 2 (∀𝑥𝐴 ¬ 𝜑 → ¬ ∃𝑥𝐴 𝜑)
32con2i 628 1 (∃𝑥𝐴 𝜑 → ¬ ∀𝑥𝐴 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wral 2465  wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie2 1504
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-ral 2470  df-rex 2471
This theorem is referenced by:  infnlbti  7038
  Copyright terms: Public domain W3C validator