| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexalim | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| rexalim | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralnex 2485 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜑) | 
| 3 | 2 | con2i 628 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: infnlbti 7092 | 
| Copyright terms: Public domain | W3C validator |