ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexalim Unicode version

Theorem rexalim 2459
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexalim  |-  ( E. x  e.  A  ph  ->  -.  A. x  e.  A  -.  ph )

Proof of Theorem rexalim
StepHypRef Expression
1 ralnex 2454 . . 3  |-  ( A. x  e.  A  -.  ph  <->  -. 
E. x  e.  A  ph )
21biimpi 119 . 2  |-  ( A. x  e.  A  -.  ph 
->  -.  E. x  e.  A  ph )
32con2i 617 1  |-  ( E. x  e.  A  ph  ->  -.  A. x  e.  A  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-ral 2449  df-rex 2450
This theorem is referenced by:  infnlbti  6991
  Copyright terms: Public domain W3C validator