ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnlbti GIF version

Theorem infnlbti 6991
Description: A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infclti.ex (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infnlbti (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑥,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥,𝑦,𝑧   𝜑,𝑢,𝑣,𝑥,𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem infnlbti
StepHypRef Expression
1 infclti.ti . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 infclti.ex . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
31, 2infglbti 6990 . . . . 5 (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
43expdimp 257 . . . 4 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧𝐵 𝑧𝑅𝐶))
5 rexalim 2459 . . . 4 (∃𝑧𝐵 𝑧𝑅𝐶 → ¬ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶)
64, 5syl6 33 . . 3 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ¬ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶))
76con2d 614 . 2 ((𝜑𝐶𝐴) → (∀𝑧𝐵 ¬ 𝑧𝑅𝐶 → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
87expimpd 361 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2136  wral 2444  wrex 2445   class class class wbr 3982  infcinf 6948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-cnv 4612  df-iota 5153  df-riota 5798  df-sup 6949  df-inf 6950
This theorem is referenced by:  infregelbex  9536
  Copyright terms: Public domain W3C validator