| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralexim | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| ralexim | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexnalim 2519 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2i 630 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |