ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralexim GIF version

Theorem ralexim 2458
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
ralexim (∀𝑥𝐴 𝜑 → ¬ ∃𝑥𝐴 ¬ 𝜑)

Proof of Theorem ralexim
StepHypRef Expression
1 rexnalim 2455 . 2 (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)
21con2i 617 1 (∀𝑥𝐴 𝜑 → ¬ ∃𝑥𝐴 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wral 2444  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator