ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralexim GIF version

Theorem ralexim 2486
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
ralexim (∀𝑥𝐴 𝜑 → ¬ ∃𝑥𝐴 ¬ 𝜑)

Proof of Theorem ralexim
StepHypRef Expression
1 rexnalim 2483 . 2 (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)
21con2i 628 1 (∀𝑥𝐴 𝜑 → ¬ ∃𝑥𝐴 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wral 2472  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator