![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximddv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | expr 375 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
4 | 3 | reximdva 2596 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: reximddv2 2599 |
Copyright terms: Public domain | W3C validator |